Amplificatori B. F. Hi-Fi da 10, 15, 25, 50, 100 W con alimentazione asimmetrica

Verranno descritti cinque amplificatori B.F. Hi-Fi con alimentazione asimmetrica. Le potenze fornite sono quelle più comunemente richieste. Le impedenze d'uscita sono quelle standard da 4 Ω e da 8 Ω .

Presentiamo i dati tecnici completi per la realizzazione di cinque tipi di amplificatori B.F. Hi-Fi. Questi cinque amplificatori le cui potenze di uscita vanno da un minimo di 10 W ad un massimo di 100 W, possono essere realizzati su due piastre di circuito stampato che noi indicheremo con A e B. La tensione di alimentazione di questi amplificatori è asimmetrica.

Amplificatore 1: 10 W, 4 Ω Amplificatore 2: 15 W, 8 Ω

Questi due amplificatori hanno lo stesso circuito elettrico e possono essere montati su una stessa piastra di circuito stampato (piastra A). Il circuito elettrico è riportato in fig. 1. In fig. 2 è riportata la piastra di circuito stampato A vista dalla parte del rame, mentre in fig. 3 si può vedere la stessa piastra di circuito stampato vista dalla parte dei componenti montati. Le prestazioni di questi due amplificatori sono riportate nella tabella 1 mentre i valori dei componenti sono riportati nella tabella 2.

Il circuito elettrico di questi due amplificatori (fig. 1), è costituito da uno stadio di ingresso (TR1), da uno stadio pilota funzionante in classe A (TR2), da uno stadio stabilizzatore della corrente di riposo dello stadio finale (TR3), ed infine dallo stadio finale a simmetria complementare formato dai transistori TR4 e TR5. Il

transistore stabilizzatore della corrente di riposo dello stadio finale, e cioè TR3, viene montato sullo stesso dissipatore di calore sul quale sono montati i transistori finali TR4 e TR5.

Il sistema di protezione dei transistori finali nel caso vengano cortocircuitati i morsetti di uscita dell'amplificatore, è molto semplice e consiste in un fusibile inserito nella tensione di alimentazione. Il dissipatore di calore per i transistori finali viene calcolato in base alle regole già enunciate. Il valore di resistenza termica tra dissipatore e ambiente $(R_{th \ h-a})$ che devono possedere i due suddetti tipi di dissipatori come pure i dati relativi all'area (di una sola facciata) dei medesimi sono riportati nella tabella 1.

Gli stadi di ingresso, comprendenti i transistori preamplificatori e pilota sono identici per tutti e cinque gli amplificatori descritti. Il transistore impiegato nello stadio preamplificatore permette di inserire, tramite i resistori R3, R5, R15, un elevato valore di controreazione. Questo transistore lavora con una corrente di 0,5 mA; esso funziona anche da stabilizzatore della tensione dimezzata (V_A). Per realizzare una buona stabilizzazione in c.c. della tensione dimezzata (V_A), il valore del resistore R5 non dovrà essere troppo elevato. Nello stesso tempo però è bene far presente che per realizzare un elevato fattore di controreazione in c.a. (tramite R15), è necessario che il resistore R5 debba avere un valore più elevato possibile rispetto a R15, dato che

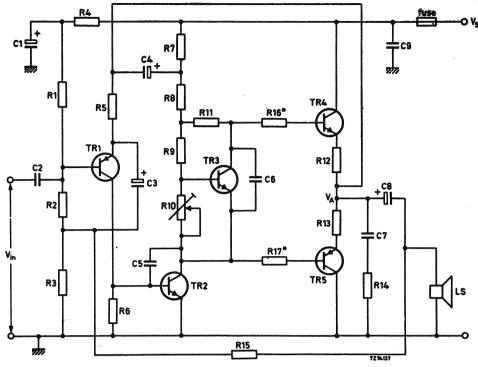


Fig. 1 - Schema elettrico per la realizzazione degli amplificatori 1 e 2. I resistori R 16 e R 17 vanno eliminati.

R5 e R15 risultano agli effetti pratici, collegati in parallelo.

Ad ogni modo, i valori che noi abbiamo assegnato a questi componenti consentono di realizzare un fattore di controreazione abbastanza elevato così da consentire all'impedenza di ingresso dell'amplificatore di possedere un valore pressocché uguale a quello del resistore R1 (vedi tabella 1 e 3).

Per bloccare eventuali fenomeni di instabilità alle frequenze elevate, il condensatore C5 viene collegato tra collettore e base del transistore TR2 funzionante da pilota e lavorante in classe A.

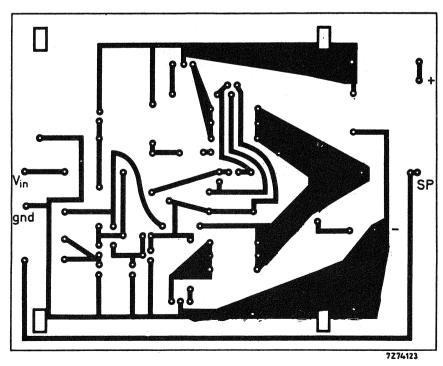
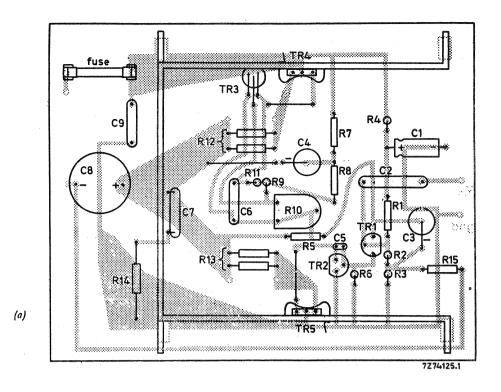



Fig. 2 - Circuito stampato tipo A (visto dalla parte del rame) per la realizzazione degli amplificatori 1 e 2.

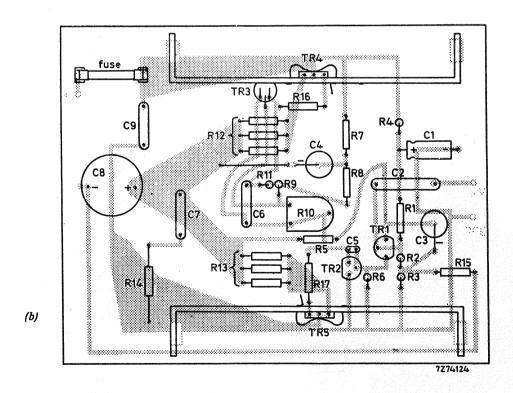


Fig. 3 - Circuito stampato A, visto dalla parte dei componenti.

- (a) Negli amplificatori 1 e 2 viene impiegato un unico dissipatore di calore nel quale sono montati i transistori finali TR4 e TR5 e il transistore stabilizzatore TR3. Il condensatore C7 non deve venire a trovarsi in contatto con il dissipatore di calore.
- (b) L'amplificatore 2 ha due dissipatori di calore distinti per i due transistori finali. Il transistore TR3 viene montato in questo caso su il dissipatore di calore nel quale è stato montato TR4.

TABELLA 1 - Prestazioni caratteristiche degli amplificatori 1 e 2

Amplificatori	1	2	unità di misura	
Po nom	10	15	w	
Carico R _L	4	8	Ω	
V _s nominale a pieno carico	27	40	V	
I _{c nom} dei transistori: TR1	0,5	0,5	mA	
TR2	5,0	4,0	mA	
Corrente di riposo I _{coo} , TR4, TR5	20	20	mA	
Corrente di alimentazione alla Ponom	715	625	mA	
$P_{o max}$ alla $f = 1 \text{ kHz}$; $d_{tot} = 1\%$	≥ 13	≥ 18	W	
Sensibilità di ingresso alla Ponom	300	300	mV	
Impedenza di ingresso	75	75	kΩ	
Impedenza di uscita	0,2	0,15	Ω	
Distorsione di intermodulazione alla Po nom (DIN 45500)	≤ 0,5	≤ 0,5	%	
Distorsione d_{tot} al $P_{o nom}$, $f = 1 \text{ kHz}$	≤ 0,1	≤ 0,1	%	
Dissipatori: R _{th h-a}	6,25 *	4,6 *	°C/W	
Superficie (alluminio da 2 mm, verniciato, disposto verticalmente)	65 *	90 *	cm²	
Risposta in frequenza a — 1 dB, livello di riferimento: Po nom — 6 dB	≤ 20 Hz 100 kHz			
Larghezza di banda della potenza a $-3 \text{ dB} \text{ (d}_{tot} = 1\%)**$	≤ 20 Hz 100 .kHz			

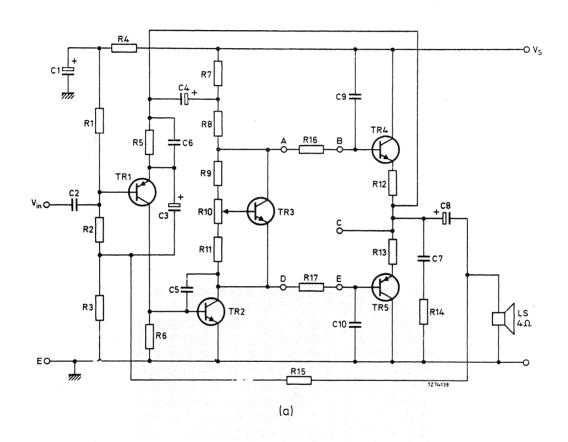
^{*} Dissipatore di calore in comune per entrambi i transistori di uscita; il transistore n-p-n viene montato su ron-della di mica. Il transistore TR3 è accoppiato termica-mente a questo dissipatore di calore.

TABELLA 2 - Componenti richiesti per la realizzazione degli amplificatori 1 e 2

1 1					
Amplificatore	1	2			
R1	100 kΩ	100 kΩ			
R2	120 kΩ	120 kΩ			
R3	47 Ω	39 Ω			
R4	56 kΩ	56 kΩ			
R5	2,2 kΩ	3,3 kΩ			
R6	1,2 kΩ	1,2 kΩ			
R7	1,2 kΩ	2,2 kΩ			
R8	1,2 kΩ	2,2 kΩ			
R9	3,3 kΩ	3,3 kΩ			
R10	$2.2 \text{ k}\Omega$	2,2 kΩ			
R11	56 Ω	56 Ω			
R12	0,75 Ω*	1 Ω			
R13	0,75 Ω*	1 Ω**			
R14	10 Ω	10 Ω**			
R15	1,8 kΩ	2,7 kΩ			
	,				
C1	4,7 μF, 63 V	4,7 μF, 63 V			
C2	150 nF	150 nF			
C3	220 μF, 16 V	100 μF, 25 V			
C4	100 μF, 25 V	100 μF, 25 V			
C5	100 pF	100 pF			
C6	100 nF	100 nF			
C7	100 nF	100 nF			
C8	1500 μF, 16 V	1000 μF, 25 V			
C9	100 nF	100 nF			
TR1	BC558	BC558			
TR2	BC538 BC547	BC536 BC547			
TR3	BC548	BC548			
TR4	BD263	BD263			
TR5	BD263 BD262	BD263 BD262			
IKJ	100202	DD202			
Fusibile	1 A	0,8 A			

Fig. 3a - Realizzazione pratica dell'amplificatore da $25W/4\Omega$.

* $2 \times 1.5 \Omega$ in parallelo


^{**} La larghezza di banda della potenza alle basse frequenze può essere migliorata impiegando una capacità di uscita di valore più elevato (C8); per esempio, 2200 µF nel caso degli amplificatori 1 e 2.

^{**} 2×2 Ω in parallelo

Amplificatore 3: 25 W, 4 Ω Amplificatore 4: 50 W, 4 Ω Amplificatore 5: 100 W, 4 Ω

Questi tre amplificatori differiscono dagli amplificatori 1 e 2 in quanto in essi è presente un circuito che protegge i transistori finali nel caso di cortocircuito dei morsetti di uscita dell'amplificatore; Il circuito elettrico di questi amplificatori è riportato in fig. 4, mentre il circuito stampato sul quale sono realizzati è riportato nelle figure 5 e 6 (piastra di circuito stampato di tipo B).

Le prestazioni di questi amplificatori sono riportate nella tabella 3 mentre i valori dei componenti si possono vedere nella tabella 4.

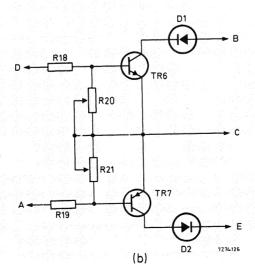


Fig. 4 - Schema elettrico per la realizzazione degli amplificatori 3,4 e 5.

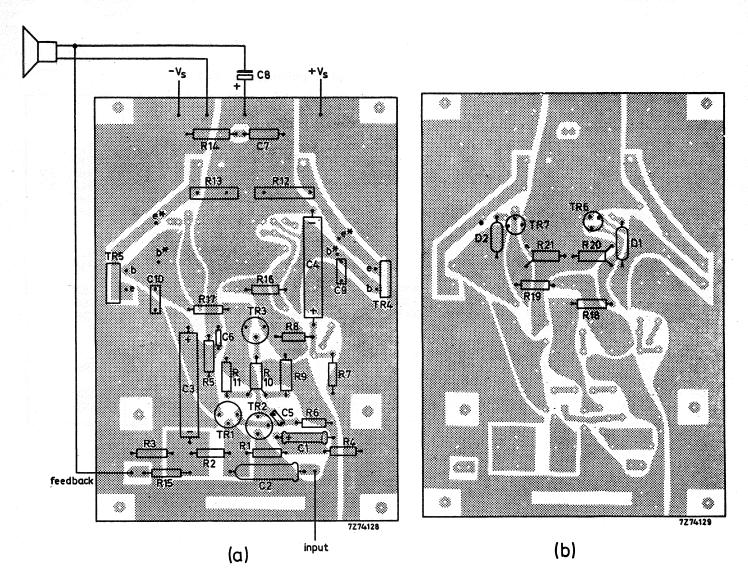

- (a) Circuito dell'amplificatore.
- (b) Circuito per la protezione contro eventuali cortocircuiti dei morsetti di uscita.

TABELLA 3 - Prestazioni degli amplificatori, 3, 4, 5

Amplificatori	3	4	5	unità di misura
P _{o nom}	25	50	100	W
Carico R _L	4	4	4	Ω
V _{s nom} a pieno carico	40	60	80	v
I _{c nom} dei transistori: TR1	0,5	0,5	0,5	mA
TR2	5,0	4,0	4,0	mA.
Corrente di riposo I _{cqo} , TR4, TR5	20	40	40	mA
Corrente di alimentazione alla Ponom	1,2	1,65	2,25	A
Sensibilità d'ingresso per P. nom	400	· 400	500	mV
Impedenza di ingresso	150	150	150	kΩ
Impedenza di uscita	0,04	0,05	0,1	Ω
Distorsione di intermodulazione alla Po nom (DIN 45500)	0,6	0,6	0,5	%
Rapporto non pesato S/D a 50 mW di uscita	> 75	> 75	> 70	dB
Risposta in frequenza — 0,5 dB, livello riferimento: Po nom — 6 dB	15 Hz 70 kHz	28 Hz 65 kHz	36 Hz 36 kHz	
Larghezza di banda della potenza — 3 dB (d _{tot} = 1%)	12 Hz 60 kHz	12 Hz 65 kHz	20 Hz 20 kHz	
Distorsione armonica d _{tot} (1 kHz; P _{o nom})	0,1	0,35	0,3	%
Dissipatori: R _{th h-a}	4,1	3,4	1,2	°C/W

Fig. 5 - Circuito stampato tipo B per la realizzazione degli amplificatori 3, 4, 5, visto dalla parte del rame.

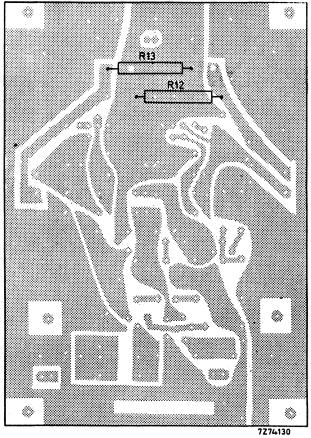


Fig. 6 - Circuito stampato tipo B per la realizzazione degli amplificatori 3, 4, 5 visto dalla parte dei componenti. (a) Sono presenti tutti i componenti dell'amplificatore ad eccezione di quelli del circuito di protezione che, per maggior chiarezza, sono mostrati separatamente in (b). I diodi DI e D2 vengono usari soltanto negli amplificatori 4 e 5. I collegamenti e e b (segnati con l'asterisco) per i transistori TR4 e TR5 sono per il contenitore TO-3: nel caso di contenitori tipo TO-220 converrà tagliar via il terminale esterno del collettore. (c) Sistemazione particolare dei resistori R12 e R13 nell'amplificatore da 100 W.

(c)

TABELLA 4 - Valori dei componenti per la realizzazione degli amplificatori 3, 4, 5

amplif.	3	4	5	amplif.	3	4	5
R1	150 kΩ	150 kΩ	270 kΩ	C1	4,7 μF, 63 V	4,7 μF, 63 V	4,7 μF, 63 V
R2	150 kΩ	220 kΩ	390 kΩ	C2	680 nF	680 nF	680 nF
R3	47 Ω	47 Ω	47 Ω	C3	220 μF, 25 V	160 μF, 63 V	160 μF, 63 V
R4	47 kΩ	100 kΩ	220 kΩ	C4	220 μF, 25 V	220 μF, 25 V	220 μF, 63 V
R5	3,3 kΩ	3,3 kΩ	3,3 kΩ	C5	100 pF	100 pF	100 pF
R6	1,2 kΩ	1,2 kΩ	1,2 kΩ	C6	330 pF	330 pF	330 pF
R7	1 kΩ	1 kΩ	1 kΩ	C7	100 nF	100 nF	100 nF
R8	1,2 kΩ	2,7 kΩ	2,2 kΩ	C8	2200 μF, 25 V	2200 μF, 40 V	2200 μF, 63 V
R9	1,5 kΩ	1,5 kΩ	1,5 kΩ	C9	330 pF	330 pF	330 pF
R10	1 kΩ	1 kΩ	1 kΩ	C10	330 pF	330 pF	330 pF
R11	680 Ω	680 Ω	680 Ω				_
R12	0,5 Ω, 2 W	1 Ω, 4 W	1 Ω, 6W	TR1	BC558	BC557	BC557
R13	0,5 Ω, 2 W	1 Ω, 4 W	1 Ω, 6 W	TR2	BC547	BC637	BC639
R14	10 Ω, 0,5 W	10 Ω, 0,5 W	10 Ω, 0,5 W	TR3	BC548	BC548	BC548
R15	1,8 kΩ	2,7 kΩ	5,6 kΩ	TR4	BD267	BDX65A	BDX67B
R16	270 Ω	470 Ω, 0,5 W	270 Ω, 0,5 W	TR5	BD266	BDX64A	BDX66B
R17	270 Ω	470 Ω, 0,5 W	270 Ω, 0,5 W	TR6	BC548	BC548	BC548
R18	8,2 kΩ	10 kΩ	27 kΩ	TR7	BC558	BC558	BC558
R19	8,2 kΩ	10 kΩ	27 kΩ				
R20	4,7 kΩ	4,7 kΩ	4,7 kΩ	D1		BA222	BA222
R21	4,7 kΩ	4,7 kΩ	4,7 kΩ	D2	enzanas	BA222	BA222