

FEATURES:

Dual channel
Crossover frequency selectable by plug-in circuit board
12 dB or 18 dB per octave filter slope
Switchable subsonic high-pass functions
THD: $0.01 \%, 20 \mathrm{~Hz}-20 \mathrm{kHz}$
Signal/Noise ratio greater than 90 dB

The 5235 Electronic Frequency Dividing Network is designed for use with studio monitor or sound reinforcement loudspeaker systems to provide a cleaner signal from the power source directly to the individual loudspeakers of the system. By dividing the audio spectrum before power amplification, treble tones are separated from, and unaffected by, bass frequencies. The result is more efficient utilization of available amplifier power. Direct coupling to the loudspeakers also eliminates the insertion loss typical of most passive networks and permits realization of the maximum damping
factor available from a given amplifier.
The 5235, a dual-channel unit, can be used for biamplification of two loudspeaker systems or to control both transition points in a triamplified system. The latter can be accomplished by utilizing one channel for the lower crossover frequency and the other channel for the high frequency transition.

The 5235 is an electronic crossover network utilizing active filters. It exhibits unity gain in the low-pass output, and a maximum gain of $2(+6 \mathrm{~dB})$ in the high-pass output, with a continuous level control for high-frequency shelving. It provides adequate output to drive any quality amplifier, and operates at extremely low distortion levels at full rated output. A programmable high pass filter removes subsonic energy below the lowest usable speaker frequency.
The crossover frequency is determined by inserting the proper printed circuit card into each channel's circuitry. Cards with filter slopes of 18 dB per octave are available for cross-
over frequencies of $80 \mathrm{~Hz}, 500 \mathrm{~Hz}$, and 800 Hz . Cards with filter slopes of 12 dB per octave are available for the following frequencies: $250 \mathrm{~Hz}, 500 \mathrm{~Hz}, 800 \mathrm{~Hz}, 1200 \mathrm{~Hz}, 5 \mathrm{kHz}$, and 7 kHz . In addition, cards are available with specific crossover characteristics for large JBL studio monitors. Blank cards are also available to allow construction of circuitry for other crossover frequencies.

Input and output terminals for the 5235 . The dual channels can be utilized for triamplification of a single loudspeaker system by connecting the low frequency output of one channel to the input terminals of the other channel. This allows separate, completely independent adjustment of the midrange and high frequencies.

ARCHITECTS SPECIFICATIONS:

The sound system described herein shall be equipped with separate power amplifiers for low (midrange) and high frequency program material. A dual-channel low-level active network shall be provided to filter program material at the designated crossover point(s): The inputs shall be transformerless and symmetrical. Dual-in-line switching shall provide selectable low fre-
quency equalization and subsonic filtering. The frequency dividing network shall be equipped
with separate output buffer amplifiers for low and high frequency program material.
Crossover frequency selection shall be accomplished by internally mounted plug-in circuit modules. Each module shall be designed with the crossover frequency printed in such a position as to be easily read through a window in the front panel of the electronic frequency dividing network. The designated crossover frequency shall be the point at which the slopes of the pass band curves cross and where each is 3 dB down from the average output level This point shall be
within $\pm 10 \%$ of the designated frequency. The filter slope shall be 12 dB or 18 dB per be
The unmodified frequency response of the dividing network shall bio Distortion shall be less than 0.03% THD at +18 dB and $0.01 \% \mathrm{THD}+18 \mathrm{dBv}$ into $100 \mathrm{k} \Omega \mathrm{dB}$ Signal-to-noise ratio shall be greater than 90 dB at rated output, $20 \mathrm{~Hz}-20 \mathrm{kHz}$ equivalent bandwidth.
Internal provision shall be made for switch selection of parallel monaural low frequency outputs. A high-pass filter with 12 dB per octave slope shall remove subsonic energy below the low est usable speaker frequency. A dual-in-line switch shall provide the following programmable options for the subsonic filter:
a. Flat frequency response
b. 20 Hz high pass filter, 12 dB /octave slope, $\mathrm{Q}=0.707$ (Butterworth)
c. 20 Hz high pass filter, 12 dB /octave slope, $\mathrm{Q}=2(6 \mathrm{~dB}$ boost @ 20 Hz$)$
d. 30 Hz high pass filter, 12 dB /octave slope, $\mathrm{Q}=0.54$
e. 30 Hz high pass filter, 12 dB /octave slope, $\mathrm{Q}=0.84$
f. 30 Hz high pass filter, $12 \mathrm{~dB} /$ octave slope, $\mathrm{Q}=2(6 \mathrm{~dB}$ boost @ 30 Hz$)$
g. 40 Hz high pass filter, 12 dB /octave slope, $\mathrm{Q}=0.707$ (Butterworth
h. 40 Hz high pass filter, $12 \mathrm{~dB} /$ octave slope, $\mathrm{Q}=2(6 \mathrm{~dB}$ boost @ 40 Hz)

Isolation between channels shall be greater than 70 dB . The electronic crossover network shall be a JBL 5235 .

SPECIFICATIONS:

Note: $0 \mathrm{dBm}=1 \mathrm{~mW} ; 0 \mathrm{dBu}=0.775 \mathrm{~V}$

