

Architectural Specifications

The preamplifier shall have two input channels with separately adjustable gain controls accessible on the front panel. Each input channel shall accommodate an unbalanced high impedance microphone or line input, or a balanced high or low impedance microphone or line input with an optional accessory plug-in transformer. One input channel shall also accommodate a magnetic phono cartridge input.
The preamplifier shall be capable of operating in either of two modes. In the MIX mode, both input channels shall be mixed together with full gain available to each at all times. In the OVERRIDE mode, CHANNEL 1 shall be switched on and CHANNEL 2 shall be reduced in gain by 15 dBm when the TRIP terminal is connected to GND.

The preamplifier shall be capable of +18 dBm output level into an unbalanced 600Ω load (direct output) and +24 dBm output level into a balanced 600Ω load (transformer output). Frequency response in the audio band shall be flat within $\pm 1 \mathrm{~dB}$ and distortion shall be $<0.2 \%, 30 \mathrm{~Hz}-20 \mathrm{kHz}$. The preamplifier shall occupy one standard EIA rack space and shall operate on 100-120 V AC or 200-240 VAC, $50 / 60 \mathrm{~Hz}$.

Installation

The 5152 is suitable either for rack mounting in one EIA standard rack space ($123 / 32^{\prime \prime}$) without additional bracing or ventilation, or for counter-top placement. All external connections, MIX/OVERRIDE switch and matching/bridging transformer options are available on the rear panel, Figure 1.

NOTE: All low-level amplification circuitry can be adversely affected by strong magnetic fields. For this reason, it is recommended that the unit be located at least seven inches from any power amplifier or similar source of electromagnetic radiation.

Ventilation

The 5152 generates minimal heat during normal usage. However, because transistors are heat sensitive, the 5152 should not be placed adjacent to heat-generating equipment or in areas where the ambient temperature exceeds $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$ without adequate ventilation.
We

PRODUCT SPECIFICATION

	Direct Out	Transformer Out
Gain		
Low Impedance Microphone (with 5195 transformer)	62 dB	68 dB
High Impedance Microphone (no transformer)	45 dB	51 dB
Line (with 5195 transformer)	25 dB	31 dB
Line (no transformer)	21 dB	27 dB
Phono	47 dB @ 1 kHz	53 dB @ 1 kHz
Maximum Output Level		
Balanced		$\begin{aligned} & +24 \mathrm{dBm} @ \\ & 600 \Omega \end{aligned}$
Unbalanced	$\begin{aligned} & +18 \mathrm{dBm} @ \\ & 600 \Omega \end{aligned}$	
Frequency Response	20 Hz to $20 \mathrm{kHz},+$ (@ +18dBm)	$-1 \mathrm{~dB}$
THD	$<0.2 \%, 30 \mathrm{~Hz}$ to 20	kHz
Equivalent Input Noise	-125 dB ref. 0.775 impedance microph source, either chann ume, 20 kHz equiva	unweighted, low one input, 150Ω el, maximum volent noise bandwidth
Input Impedance		
Low Impedance Microphone	$1 \mathrm{k} \Omega$	
High Impedance Microphone	$56 \mathrm{k} \Omega$	
Line	$15 \mathrm{k} \Omega$ Or 600Ω with	erminating resistor
Phono (channel 2 only)	$56 \mathrm{k} \Omega$	
Power Requirements	120/240 V AC, 50/60	0 Hz
Power Consumption	6 W, normal	
Maximum Ambient Operating Temperature	$50^{\circ} \mathrm{C}$	$122^{\circ} \mathrm{F}$
Clearance Dimensions		
Front Panel	$44 \mathrm{~mm} \times 483 \mathrm{~mm}$	$123 / 32$ in $\times 19$ in
Depth of Controls	20 mm	$3 / 4$ in
Depth Behind Panel (no transformer)	216 mm	$81 / 2 \mathrm{in}$
Depth Behind Panel (with 5195 transformer)	251 mm	$97 / 8$ in
Mounting	1 EIA standard rack space	
Weight		
Net	3.6 kg	8 lb
Shipping	4.8 kg	10.5 lb
Accessory		5195 matching/bridging transformer

Figure 1

Input Connections

Input connections may be either direct-coupled or transformer-isolated at the input terminal strip, TB301, or the two RCA-type phono jacks, J301 and J302, Figure 1. Direct coupling is accomplished by connecting the inner lead of a shield cable to HI of INPUT 1 or INPUT 2 and the shield lead to LO of INPUT 1 or INPUT 2, Figure 3. For transformer-isolated inputs, JBL 5195 matching/bridging transformers must be plugged into the 9-pin sockets, XT301 or XT302.

An assortment of jumpers is included with the unit to facilitate all interconnections shown in Figures 3 and 6.

Balanced Low Impedance Microphone or High Impedance Line

Figure 2

Figure 4

Phono Jack May be Used for Unbalanced High Impedance Microphone, Line or Magnetic Phono (channel 2 only)

Figure 6

Balanced Low Impedance Line

Output Connections
Either transformer-isolated or direct output connections are provided at the OUPUT terminal strip, TB302, Figure 1.

Unbalanced High Impedance Microptıone or Line

Figure 3

Balanced Low Impedance Line with 14 dB Extra Gain (Input Level less than -20 dBm)

Figure 5

Figures 7 a and 7 b show the optional output wiring connections.

Figure 7a

Figure 7b

BALANCED OUTPUT

DIRECT OUTPUT

Figure 7 a

Mode Selection

The preamplifier is designed to operate either of two modes, selectable by means of the OVERRIDE/MIX switch, as shown in Figure 1.

MIX - INPUT 1 and INPUT 2 are mixed as determined by settings of their level controls, with full gain available at each input.

OVERRIDE - INPUT 1 is normally muted and INPUT 2 is fully operational. When the override is triggered by grounding the TRIP terminal of INPUT 1, INPUT 1 becomes fully operational and INPUT 2 is reduced in gain by 15 dB .

The following procedures are designed to assist in the isolation of malfunctions. The operations described should be undertaken only after an investigation of all external connections and adjustments has indicated, beyond reasonable doubt, that the problem is actually within the unit.

Component Access

The 5152 contains only one printed circuit board. All components are mounted directly on the circuit board with the exception of the output transformer, power transformer, on/off switch, pilot lamp, level controls, supply voltage select switch, input and output terminal strips, mix/override switch and the 9-pin sockets.

To reach the circuit board for testing, servicing or input selection, only the top cover must be removed (eight sheet metal screws). Removal of the circuit board from the chassis requires popping out six snaps.

Voltage Conversion

The 5152 can be operated from either a 100-120 V AC or 200-240 V AC, $50 / 60 \mathrm{~Hz}$ source. The SUPPLY VOLTAGE SELECT switch, S301, converts the unit from one operating voltage range to the other. Use the following procedures to convert the preamplifier to a different voltage range:

1. Disconnect the 5152 from the power source.
2. Slide the SUPPLY VOLTAGE SELECT switch to the appropriate line voltage range.

WARNING

THIS SECTION OF THE MANUAL CONTAINS SERVICE INSTRUCTIONS FOR USE BY QUALIFIED SERVICE PERSONNEL ONLY.
3. Change the line cord and attachment plug to match the power source receptacle or use a 120 -to- 240 V adapter (not provided). The attachment plug and/or line cord used for 240 V AC mode in the U.S., Canada and Japan shall be both U.L. listed and C.S.A. Certified. For use in other countries, line cord selection should be based on local regulations governing 240 V AC $50 / 60 \mathrm{~Hz}$ supply source.

U.L. and C.S.A. Voltage Wiring Code				
Country	Switch,	Switch,	Ground,	Wire
	S301,	S201,	E401	Color
	Terminal	Terminal		
U.S. and	1	-	-	Black
Japan	-	1	-	White
	-	-	Yes	Green
Europe	1	-	-	Blue
	-	1	-	Brown
	-	-	Yes	Green , تlow

CAUTION: This unit may be damaged if operated with the supply voltage select switch set incorrectly for the line voltage applied.

Selector Switch

Table 1 shows the various input sources, terminations and jumper options for the 5152. See Figures 2-6 for available interconnections.

TABLE 1

Input	Connector	Input Selector Switch Position (Internal Adjustment)	Accessory Transformer	Transformer Socket Jumper Connections	Termination Resistor
Balanced					
Low Impedance	Terminal	MIC	5195	None	None
Microphone	Strip				
Unbalanced					
High Impedance	Terminal	MIC	None	4-5	None
Microphone	Strip			7-9	
	Phono Jacks (Channel 2 only)	MIC	None	3-9	None
Balanced					
High Impedance	Terminal	LINE	5195	None	None
Line	Strip				
Balanced					
Low Impedance	Terminal	LINE	5195	None	620-ohm
Line	Strip				1/2-watt
Balanced					
Low Impedance 5105					
Line with 14 dB	Terminal	MIC	5195	None	1800-ohm
Extra Gain	Strip				$1 / 4$-watt
(Input Level Less					
Than - 20 dBm)					
Unbalanced					
High Impedance	Terminal	LINE	None	4-5	None
Line	Strip			8-9	
	Phono Jacks (Channel 2 only)	LINE	None	3-9	None
Magnetic					
Phono	Phono Jacks	PHONO	None	3-9	None
(Channel 2 only)					

Output Conversion

For 150Ω output, the following procedure should be used to parallel the windings of the output transformer, T402, Figure 8.

1. Disconnect the unit from the power source.
2. Clip the BLUE and VIOLET output transformer leads from the printed circuit board at points \#27 and \#28.
3. Solder the BLUE transformer wire to the GREEN wire at the OUTPUT terminal strip, TB302, marked HI.
4. Solder the VIOLET transformer wire to the GRAY wire at the OUTPUT terminal strip, TB302, marked LO.

Figure 8.

The 5152 has been designed so that both the direct and transformer outputs may be used simultaneously.

Proof of Performance

All performance checks are in-cabinet procedures to
be used for checking specifications after repair or for incoming quality control inspection.

NOTE: All measurements should be made with the unit and test equipment power cords connected to a normal 120 V AC or 240 V AC $50 / 60 \mathrm{~Hz}$ line source.

WARNING
THIS SECTION OF THE MANUAL CONTAINS SERVICE INSTRUCTIONS FOR USE BY QUALIFIED SERVICE PERSONNEL ONLY.

Alternate oscillator setup: $Z=600 \Omega$

Figure 12, 40 db , 600Ω PAD

The following test equipment is recommended:
AUDIO TEST OSCILLATOR
HARMONIC DISTORTION ANALYZER
40 dB PAD (150Ω)
REVERSE RIAA EQUALIZATION NETWORK
20 kHz FILTER
ALTERNATE 40 dB PAD (600 Ω)

Krohn-Hite 4100, or equivalent.
Hewlett-Packard model 333A, or equivalent.
See Figure 9
See Figure 10
See Figure 11
See Figure 12

Frequency Response

($20 \mathrm{~Hz}-20 \mathrm{kHz},+0,-1 \mathrm{~dB} @+18 \mathrm{dBm}$, into 600Ω Ref. 1 kHz .)

Table 2 outlines the test set-up and sequence for measuring frequency response of the 5152.

TABLE 2

Frequency Response Test and

 Operational Sequence.| Connect test oscillator to input. | 1 | 1 | | |
| :--- | :--- | :--- | :--- | :--- |
| Connect test oscillator to input using
 Figure 9 or Figure 12. | | 1 | 1 | |
| Connect test oscillator to input using
 Figure 10. | | | | 1 |
| Set MIC/LINE or PHONO/LINE/MIC
 switch to MIC. | | 2 | 2 | |
| Set MIC/LINE or PHONO/LINE/MIC
 switch to LINE. | | | | |
| Set PHONO/LINE/MIC switch to PHONO. | | | | |

NOTE: To use Table 2, read down and across. Numbers under LINE, MIC and PHONO represent test sequence.

THD

($\leq 0.2 \%, 30 \mathrm{~Hz}-20 \mathrm{kHz}$).
Using the test set-up, Figures 9 and 14:

1. Set the MIC/LINE or PHONO/LINE/MIC switch to LINE.
2. Set the MIX/OVERRIDE switch to MIX.
3. Install jumpers between terminals \#4 and \#5 and between terminals \#8 and \#9 of each 9-pin socket, XT301 and XT302, Figure 13.

Figure 13
4. Set the CHANNEL 1 or CHANNEL 2 level control, depending on which channel is under test, to maximum.
5. Set the oscillator level for $\mathrm{a}+18 \mathrm{dBm}$ (direct output) or +24 dBm (transformer output).
6. Measure the distortion of the preamplifier at 30 Hz , $200 \mathrm{~Hz}, 2 \mathrm{kHz}$ and 20 kHz .

Figure 14, thD test
SET UP
Figure 14, THD test set up.

Microphone Equivalent Noise

(-125 dB Ref. 0.775 V unweighted, 150Ω source
20 kHz equivalent bandwidth).
Using the test set-up, Figure 11 or 12:

1. Set the MIC/LINE or PHONO/LINE/MIC switch to MIC and the MIX/OVERRIDE switch to MIX.
2. Install a 5195 transformer into INPUT 1 or INPUT 2.
3. Set the CHANNEL 1 or CHANNEL 2 level control to maximum and the channel not under test to minimum.
4. Set the oscillator to 2 kHz and adjust the output level of the 5152 to 0 dBm .
5. Measure the input signal. Typical readings are -71 dB , indicating a gain of 71 dB .
6. Install the 20 kHz filter, Figure 11.
7. Disconnect the oscillator from the preamplifier.
8. Measure the noise level at the output of the 5152. Typical readings are -54 dBm .
9. Add the input level and noise measurement to calculate the equivalent input noise.

$$
\begin{array}{rlll}
\text { EXAMPLE } & -71 \mathrm{~dB} & \text { Ref. } 0 \mathrm{dBm} & \text { INPUT LEVEL } \\
-54 \mathrm{~dB} & \text { Ref. } & 0 \mathrm{dBm} & \text { NOISE LEVEL } \\
\hline-125 \mathrm{~dB} & \text { Ref. } & 0 \mathrm{dBm} & \text { EQUIVALENT } \\
& & & \text { INPUT NOISE }
\end{array}
$$

10. The calculated equivalent input noise figure should be -125 dB (Ref. 0 dBm) or better.

DC Voltage Measurements

All DC voltage measurements are with respect to ground and are made using a Fluke 8000A with a line voltage of 120 V AC.
Voltages shown with two readings on the schematic indicate the two states of the TRIP DETECTOR and FET GATE when properly operating.

EXAMPLE	+0.460 V	TRIP DETECTOR NOT GROUNDED
	+86.9 mV	TRIP DETECTOR GROUNDED

TRIP DETECTOR NOT GROUNDED TRIP DETECTOR GROUNDED

