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This paper provides a set of mathematical expressions to analyze the performance of loudspeaker line 

arrays.  It begins by developing a set of expressions for straight-line arrays including the directivity 
function, polar response, quarter-power angle, on-axis and off-axis pressure response and two-dimensional 
pressure field.  Since in practice many loudspeaker line arrays are not actually straight, the paper then 
provides expressions for curved (arc), “J” and “progressive” line arrays.  In addition, since loudspeaker 
systems are often not perfect sources, the paper analyzes the effects of spherical radiating sources and gaps 
between sources.  The paper closes with several examples of how to apply the models and compares 
modeled performance to measured polar data. 

 

1 INTRODUCTION 
Vertical line arrays of loudspeakers are gaining 

prominence these days among sound reinforcement 
professionals.  That is not to say that they are an entirely 
new concept.  Indeed, David Klepper and Douglas Steele 
wrote in 1963 [1]: “Line-source loudspeaker arrays, often 
called ‘column’ loudspeakers, have recently become of 
great interest to sound-system contractors and equipment 
manufacturers in this country.” 

What is new is that loudspeaker manufacturers have 
applied good engineering practice to long-known 
principles of line source physics.  Systems today provide 
well-behaved directivity response, high output power and 
high quality sound over an extended frequency range.  
Together these represent a significant improvement in 
performance over conventional column speakers. 

Column speakers typically comprise a vertical stack of 
full-range direct radiators.  They produce modest sound 
power levels and exhibit vertical directivity response that 
changes substantially with frequency.  Klepper and Steele 
describe problems with column speakers including 
“narrowing of the major (on-axis) lobe at higher 
frequencies” and “strong minor off-axis lobes or side 
lobes at high frequencies.”  These, they write, are 
predicted by equations given by Olson [2].  Their paper 
prescribes methods for improving the polar response, but 
the success of these techniques is limited by the 
directional characteristics of the individual loudspeakers 
themselves that narrow at high frequency. 

Today, manufacturers of loudspeaker line arrays often 
provide specially designed wave-guides in place of 
individual direct radiators for the high frequency band.  
This is an important improvement.  While column 
loudspeakers behave like an array of individual, 
frequency-dependent acoustic sources, contemporary 
systems behave more like continuous line sources.  This 

allows them to achieve well-behaved directivity response 
to very high frequency.   

Manufacturers have also realized that long, perfectly 
straight loudspeaker line arrays produce a directivity 
response that often becomes too narrow at high frequency 
for many sound reinforcement venues.  In fact, they have 
learned that it is often desirable to produce an 
asymmetrical response in the vertical plane, for instance, 
one that projects energy forward and downward at the 
same time.  This can be achieved if the array is slightly 
curved, particularly along the lower portion.  Recently, 
manufacturers have designed line array loudspeaker 
systems that can be curved over the entire length of the 
array while maintaining the attributes of a continuous 
source.  This allows users to achieve simultaneously the 
narrow, long throw characteristics of a straight-line array 
and the wide, lower fill characteristics of a curved array.   

This paper provides mathematical expressions for 
estimating the performance of a wide variety of line 
arrays.  The models are based on theoretical line sources 
but the estimates obtained agree quite well with 
measurements taken on real-life line arrays, particularly 
those from the latest generation of loudspeaker systems 
designed specifically for line array applications. 

2 BACKGROUND AND OVERVIEW 
Most analyses of line sources reference Wolff and 

Malter’s [3] seminal work of 1929.  Wolff et. al.  develop 
expressions for the polar response of a linear array of 
point sources in the far field.  The far field restriction 
allows the directivity function to be expressed in closed 
form.  Their paper has been referenced and/or augmented 
over the years by Beranek [4], Wood [5], Davis [6], Rossi 
[7], and Skudrzyk [8] among others.  For the convenience 
of the reader, Sections 3.1 through 3.4 of this paper 
summarize important elements of their work as well. 
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Section 3.5 analyzes the on-axis pressure response of 
line sources.  Here, the far field restriction is abandoned 
and the pressure is expressed as a function of distance.  
This analysis follows the work of Lipshitz and 
Vanderkooy [9], and Smith [10] who present the on-axis 
and off-axis pressure response of line sources.  They show 
that the pressure response undulates near the source while 
generally decreasing in level at -3dB per doubling of 
distance.  At a certain distance, referred to as the 
transition distance( )1 , the undulations disappear and the 
response falls off at -6dB.  The near field is defined as the 
region between the source and the transition distance.  
Beyond the transition distance is the far field.  The 
transition distance is a function of line source length and 
frequency and has been estimated by Smith [10], Heil 
[11], Junger [12], and Ureda [13]. 

The pressure response of a line source on either side of 
the transition distance, however, is more complex than the 
on-axis pressure response would suggest.  In fact, 
depending upon the point chosen along the source from 
which one begins the pressure response analysis, different 
results are obtained.  Section 3.5 explores this complexity 
by comparing the results obtained when different points 
along a straight-line source are taken as the initial point.  
It is shown that each of these responses represent different 
slices through the pressure field.  The mathematical 
expression for the pressure field of a straight-line source 
is given in Section 3.6. 

As illustrated throughout Section 3, straight-line 
sources produce polar response curves that vary 
substantially with length and frequency.  At long lengths 
and high frequency they get very narrow, often too 
narrow for sound reinforcement venues.  Curved or arc 
sources, however, produce polar response curves that are 
materially wider and approach the included angle of the 
arc at high frequency.  This has been described in many of 
the texts cited earlier including Wolff [14], Olson [15], 
and Rossi [16].  Section 4 of this paper expands on the 
analysis of arc sources by providing mathematical 
expressions for the polar response, on-axis pressure 
response and two-dimensional pressure field.   

Arc sources, while useful by themselves in certain 
sound reinforcement venues, are of particular interest 
when used in conjunction with straight-line sources.  The 
combination is referred to as a J-source [17].  J-sources 
are comprised of a straight-line source placed above and 
adjacent to an arc source.  The straight segment provides 
long throw and the arc segment provides coverage in the 
down-front region.  Together they provide an 
asymmetrical polar response in the vertical plane that is 
well suited for many venues.  Section 5 describes J-
sources and provides expressions for the polar response, 
on-axis response and two-dimensional pressure field. 

                                                 
1  “Transition” distance is used instead of “critical” distance to avoid 

confusion with the term “critical distance” used in architectural 
acoustics where it refers to the distance at which the direct and 
reverberant fields are equal in level.  See Eargle, J., Handbook of 
Sound System Design, ELAR Publishing Co., Commack, New York, 
1989. 

Like a J-source, a progressive( )2  source [18] also 
provides an asymmetrical polar response in the vertical 
plane.  Unlike a J-source, however, a progressive source 
is a continuous curve.  The upper portion of the source is 
nearly straight but then increases in curvature toward the 
bottom.  Section 6 provides expressions for its polar 
response, on-axis pressure response and two-dimensional 
pressure field.  These show that a progressive source 
produces a response that is remarkably constant with 
frequency. 

In practice, even with specially designed loudspeaker 
systems, large line arrays are not perfectly continuous line 
sources.  They invariably have gaps between the 
individual array elements that are essentially non-
radiating portions of the total line source.  Certain effects 
of such discontinuities are described by Urban, [19].  
Section 7 of the present paper expands on this work and 
analyzes the polar response of straight-line sources with 
various size gaps.  It provides guidelines for acceptable 
gap-to-wavelength ratios. 

Urban also describes certain effects produced if the 
radiating elements in loudspeaker line arrays produce 
radial wave fronts instead of pure, flat wave fronts.  He 
models this as a stack of slightly curved sources.  Section 
7 of the present paper examines the polar response of this 
stack and shows that grating lobes obtain at high 
frequency or large curvature. 

Finally, it is important to examine how closely the 
mathematical models developed in this paper estimate the 
performance of loudspeaker line arrays.  Section 8 
compares modeled and measured polar response curves of 
three loudspeaker line arrays.  Despite the vagaries of 
real-life sources and measurement challenges, the models 
provide remarkably good estimates of array performance 
over a wide frequency range.  Button [20] and 
Engebretson [21] compare measured results against 
predictions produced by models similar to the ones 
developed in the present paper.  Section 8 takes measured 
results from Engebretson and compares them directly 
against predictions produced explicitly by the straight-line 
source and arc source models developed in the following 
sections. 

3 STRAIGHT LINE SOURCES 

3.1 Directivity Function of Straight Line 
Sources - General Form 

A line source can be modeled as a continuum of 
infinitely small line segments distributed along a line.  
The acoustic pressure radiated from a line source( )3  is  
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2  The term “progressive” is used in the present paper instead of “spiral” 

originally used by the author.  The term “spiral array” is sometimes 
used in reference to so-called “barber pole” arrays, as in Klepper [1]. 

3  The time-varying factor ejωt is omitted. 
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where L is the length of the line source, A(l) is the 
amplitude function along the line, ϕ(l) is the phase 
function along the line, k is the wave number  and r(l) is 
the distance from any segment dl along the line to the 
point of observation P.   

The evaluation of this expression is simplified if we 
assume that the observation point P is a large distance 
away.  That is, that the distance is much greater than the 
length of the source and the distances to P from any two 
segments along the line are approximately equal.  This 
allows us to bring the r(l) term in the denominator to the 
front of the integral since, by definition,  
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Conversely, the r(l) term in the exponential has a 
significant influence on the directivity function.  This is 
because the relatively small distance differences to P from 
any two segments are not small compared to a 
wavelength, particularly at high frequency.  Figure 1 
shows that r(l) in the exponent can be expressed as 

 
αsin)( llr =  

 
where α is the angle between a line bisecting the source 
and a line from the midpoint of the source to P.  
Substituting, the far field pressure at angle α of a line 
source is 
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The directivity function R(α) of a line source is the 

magnitude of the pressure at angle α over the magnitude 
of the maximum pressure that can be obtained.  That is: 

 

max

)(
)(

p
p

R
α

α = . 

 
The maximum radiated pressure is obtained when all 

segments along the line radiate in phase, i.e. the 
exponential function equals unity( )4 .  It is given as 
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The general form of the far field directivity function R(α) 
of a line source is then  

 

                                                 
4  Note that the maximum pressure at any given distance and frequency 

may never actually be obtained.   
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3.2 Directivity Function of Straight Line 
Sources - Uniform Amplitude and 
Phase 

The general form of the straight-line source directivity 
function developed in Section 3.1 is valid for any 
amplitude and phase functions along the length of the line 
source.  A uniform line source has constant amplitude and 
zero phase shift along its length, that is, A(l) = A and φ(l) 
= 0.  Substituting into the general form yields an 
expression for the directivity function of a uniform line 
source RU(α): 
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Solving the integral and applying Euler’s identities, 

this becomes   
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or in terms of wavelength instead of frequency 
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Figure 2 shows polar response curves( )5  of a uniform 

line source at various ratios of source length and 
wavelength.  The polar response is wide at low ratios of 
L/λ.  As the ratio is increased the directivity pattern 
narrows and exhibits nulls and lobes.  These are explored 
in more detail in Section 3.3. 

3.3 Lobes and Nulls – Uniform Straight 
Line Source 

Figure 2 shows that at long wavelengths (λ > L) the 
polar response of a uniform straight-line source is fairly 
omni-directional.  At shorter wavelengths lobes and nulls 
are obtained.  The position and magnitude of these are 
easily calculated.   

                                                 
5   A polar response curve is the directivity function expressed in 

decibels and plotted on a polar chart.  The on-axis pressure is used as 
the reference pressure, i.e.  
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The far field directivity function of a uniform line 
source is given in Section 3.2 as  
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This function has the generic form of sin(z)/z.  To 
evaluate this function on axis, that is z = 0, we must use 
L’Hospital’s rule taking derivatives of the numerator and 
denominator.  This yields 

 

1)0cos(sinlim =→
z

z
. 

 
The fact that the limit approaches unity indicates that 
there will always be a maximum on-axis.  Off-axis nulls 
are obtained when sin(z)/z goes to zero.  This occurs 
where the argument z reaches (non-zero) multiples of π.  
Substituting the full expression for z, nulls are obtained 
when 
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λ
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where m is a non-zero integer.  Therefore, nulls are 
obtained at 
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Off-axis lobes of the directivity function are found in-
between the nulls, that is, at 
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This can be written as  
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Finally, it is possible to calculate the amplitude of the 

lobes of a uniform line source.  Since the amplitude 
decreases inversely with z, the pressure amplitude of the 
mth lobe is 
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3.4 Quarter-power Angle – Uniform 
Straight Line Source 

Often it is useful to determine the –6dB angle of a 
uniform straight-line source.  This is accomplished by 

setting the generic form of the directivity function equal 
to 0.5( )6  i.e. 

 

5.0sin
=

z
z
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Solving numerically, z = 1.895.  The -6dB point on one 
side of the central lobe is at angle α where 

 

α
λ

π sin985.1 Lz == . 

 
The quarter-power angle is the total included angle 
between the -6dB points on either side of the central lobe 
and is given by 

 
αθ 26 =− dB . 

 
Solving for α in terms of length and wavelength and 
substituting we have 
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The quarter-power angle as a function of L/λ is shown 

in Figure 3.  A similar result is obtained by Benson [22].   
At small L/λ, i.e. a short line source and long 

wavelength, the quarter-power angle is wide.  At large 
ratios of L/λ, i.e. long sources and short wavelengths, the 
quarter-power angle is narrow.  For small angles( )7 , where 
sin(z) ≈ z, the line source quarter-power angle is 

 

LdB
λθ 2.1

6 =−  

 
where θ is in radians.  Expressing θ  in degrees, we have 

 

LdB
λθ 8.686 =− (degrees). 

 
In some cases, it is convenient to use frequency rather 

than a ratio of wavelength and source length.  Rewriting, 
the quarter-power angle equation for uniform line sources 
becomes (approximately) 

 

 104.2 4

6 fLdB
⋅

≈−θ (L in meters, f in Hz) 

 
                                                 
6   The directivity function is a pressure ratio.  A pressure ratio of .5 

yields a sound pressure level difference of -6dB. 
7   The small angle approximation holds for angles less than about 30 

degrees.  Note that sin(π/6) = 0.5000 and π/6 = 0.5235 so that the 
error is less than 5%. 
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or 
 

fLdB

4

6
108.7 ⋅

≈−θ (L in feet, f in Hz). 

 
The directivity response of a line source is a plot of the 

quarter power angle versus frequency.  The directivity 
response of uniform line sources of several lengths is 
shown in Figure 4.  These show that the quarter-power 
angle of large sources is quite narrow at high frequency.  
For instance, at 10kHz a 4-meter long uniform straight-
line source has a –6dB angle of 0.6 degrees.   

3.5 On-axis Pressure Response of Straight 
Line Sources 

The on-axis pressure response of a line source is 
derived in much the same manner as the directivity 
function.  The pressure radiated from each infinitely small 
line segment is summed at an observation point P.  In this 
case, however, P is at a distance x along an axis normal to 
the source and no far field assumptions are taken. 

3.5.1 Conventional Approach - Midpoint 
Method 

Figure 5 shows the conventional geometric 
construction used to solve for the pressure along a path 
normal to the source, beginning at its midpoint.  Referring 
to Figure 5, L is the total length of the source and rmid is 
the distance from any radiating element dl of the source to 
any distance x along the horizontal axis.  The general 
form for the radiated pressure at x is  
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The pressure response is the logarithmic ratio of the 
magnitude of the pressure squared at x over the magnitude 
of the pressure squared at some reference distance, i.e. 
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The on-axis pressure response of a 4-meter uniform 

straight line source, where A(l)=A and ϕ(l)=0, at 8kHz is 
shown in Figure 6.  The pressure response generally 
decreases at a rate of -3dB per doubling of distance out to 
approximately 100 meters.  It exhibits undulations in this 
region, the magnitudes of which increase as the distance 
approaches 100 meters.  Beyond 100 meters, the pressure 
amplitude no longer undulates and decreases 
monotonically at -6dB per doubling of distance.  The 
point at which this change occurs is referred to as the 
transition distance.  The region between the source and 

the transition distance is referred to as the near field and 
the region beyond is the far field. 

The transition distance varies with source length and 
frequency.  Figure 7 shows the on-axis response of three 
different length uniform line sources at 8kHz.  As length 
L increases, the transition distance increases.  Figure 8 
shows the on-axis response of a 4-meter long uniform line 
source at 500Hz, 2kHz, and 8kHz.  It shows that the 
transition distance also increases with frequency. 

3.5.2 Midpoint versus Endpoint 
The conventional approach used to determine the on-

axis pressure response of a line source discussed in 
Section 3.5.1 is to take a path normal to the source 
beginning at its midpoint.  This yields a result, however, 
that is unique to this path.  Choosing the midpoint as the 
initial point introduces symmetry into the analysis and 
minimizes the apparent aperture of the source.  If a 
different initial point is chosen, the line source appears 
longer on one side of this point than on the other side.  
This difference is maximized when the endpoint of the 
source is chosen.  In this case, the source has a length L in 
one direction and zero length in the other.  If the on-axis 
pressure is summed along a path normal to the source 
beginning at the endpoint of the line source, the transition 
distance moves increases substantially.   

Figure 9 shows a modified geometric construction for 
calculating the on-axis pressure response.  The pressure 
summed along a path normal to the endpoint of a line 
source is 

 

∫
−

+−

=
2

2
),(

)()(
)](),([L

L

end

dl
lxr

elAxp
end

llxkrj

end

ϕ

 

where 
 

2
2

2
),( ⎟

⎠
⎞

⎜
⎝
⎛ ++=

Llxlxrend . 

 
Figure 10 compares the on-axis response of a 4-meter 

long uniform straight-line source, where A(l)=A and 
ϕ(l)=0, at 8kHz using the midpoint and endpoint methods.  
The last peak of the midpoint near field response occurs at 
approximately 100 meters.  The last peak of the endpoint 
response occurs at approximately 400 meters.  Note that 
the endpoint response is at a lower amplitude level than 
the midpoint response in the near field.  In the far field the 
curves converge and yield the monotonically –6dB per 
doubling of distance decrease described above. 

If the origin of the path is moved beyond the endpoint, 
the distance to the last peak occurs at greater and greater 
distances.  It can be shown that the distance to the far 
field continues to increase as one chooses a path further 
off the midpoint axis.  However, the pressure levels fall 
off quite dramatically once the endpoint is breeched.  This 
is shown in Figure 11.  The first two curves labeled “0” 
and “L/2” are the midpoint and endpoint pressure 
responses, respectively, shown in Figure 10.  The next 
two curves are on-axis pressure response curves 
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beginning at points one length (L) and three-halves 
lengths (3L/2) vertically displaced from the midpoint. 

The curves in Figure 11 are slices through the pressure 
field, normal to the source, at increasing displacement 
from the midpoint.  We can see that as the origin of the 
path is moved off the midpoint, the amplitude levels of 
the pressure decreases in the near field.  It is 
approximately –6dB at the endpoint, but decreases to 
around –40dB at L and 3L/2.  Also, the pressure response 
curves L and 3L/2 undulate in a fashion that in the 
aggregate is nearly flat from the source to the far field.   

The L and 3L/2 response curves are so low in level 
relative to the midpoint response that they are of limited 
significance.  However, the endpoint curve (L/2) is a 
material feature of the pressure field.  It is approximately 
-6dB down from the midpoint response and undulates 
well past the midpoint transition distance.  The fact that 
two such disparate response curves can be obtained by 
merely shifting the origin of the normal path demonstrates 
the ambiguity of the term “on-axis response.”  

3.6 Pressure Field of Straight Line 
Sources 

The most comprehensive approach to observe the 
pressure response of a line source is to compute its 
pressure field.  This eliminates the question of midpoint 
versus endpoint.  It is obtained by rewriting the 
expression for the radiated pressure in terms of Cartesian 
coordinates as setup in Figure 12.  The pressure at any 
point P is 

 

∫
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Figure 13 shows the pressure field of a 4-meter 

uniform straight line source, where A(l)=A and ϕ(l)=0, in 
several frequency bands.  The major on-axis lobe gets 
narrower with increasing frequency as expected.  The 
minor lobes increase in number and lower amplitude 
levels.  At high frequency they dissolve into very complex 
patterns of constructive and destructive interference.  
Note that the pressure varies across the major lobe at 
8kHz in a manner consistent with the pressure slices 
shown in Figure 11.  The undulations extend to a greater 
distance from a line normal to the endpoint than from the 
midpoint. 

4 ARC SOURCES 
Many loudspeaker line arrays used in practice are 

actually curved.  This is because pure straight-line arrays 
at high frequency produce a narrow vertical polar 
response – often too narrow to reach audiences beneath 
and slightly in front of the array.  A slightly curved array 
provides superior coverage in this area.  One important 
type of a curved line source is an arc source.   

An arc source is comprised of radiating elements 
arranged along a segment of a circle.  At all frequencies it 

provides a wider directivity response than a straight-line 
source of the same length.  At high frequency, it provides 
a polar pattern that corresponds to the included angle of 
the arc. 

4.1 Polar Response of Arc Sources 
The derivation of the directivity function of an arc 

source follows the same steps described above for a 
straight-line source.  Figure 14 shows the geometric 
construction of an arc source with radius R and total 
included angle θ.  The pressure radiated by an arc at off-
axis angle α is 
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As in Section 3.1, the evaluation of this expression is 

simplified if we assume that the observation point P is a 
large distance away.  In this case, the distance is much 
greater than the length of the arc and the distances to P 
from any two segments along the arc are approximately 
equal.  This allows us to bring the rA term in the 
denominator to the front of the integral since by definition 
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Conversely, the rA term in the exponential has a 
significant influence on the directivity function.  This is 
because the relatively small distance differences to P from 
any two segments are not small compared to a 
wavelength.  Figure 14 shows that rA in the exponent can 
be expressed as 
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where α is the angle between a line that bisects the arc 
angle and a line from the center point of the arc to P.  
Substituting, the far field directivity function of an arc is 
then expressed in general form as 
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If we assume constant amplitude and zero phase shift 

along the arc, i.e. A(φ) = A and ϕ(φ) =0, the directivity 
function reduces to( )8 : 

                                                 
8 This integral does not have a convenient closed form solution similar 

to the one obtained for the line array.  Wolff and Malter provide a 
point source summation version of the directivity function as follows: 
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where rA is expressed above.  The polar response curves 
of a uniform 60° arc source at various ratios of radius and 
wavelength are shown in Figure 15.  Generally, these are 
wide for low ratios of R/λ and approach the included 
angle of the arc at higher ratios. 

4.2 On-Axis Pressure Response of Arc 
Sources 

The on-axis pressure response of an arc source can be 
expressed in a form similar to the earlier expressions for 
straight-line sources.  Figure 16 shows the geometric 
construction of an arc source with radius R and total 
included angle θ.  The pressure of an arc source at 
distance x is 
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where 
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Figure 17 provides a comparison of the pressure 
response of equivalent length uniform straight line and arc 
sources.  Though the arc source is curved only 30 degrees, 
its on-axis response is materially smoother in the near 
field than the one produced by the straight-line source. 

Like a line source, the pressure response of an arc 
source changes with arc length and frequency.  Figure 18 
shows the on-axis response of three uniform arc sources 
of various lengths.  The different lengths are provided by 
a constant radius (4m) with an adjusted included angle.  
Figure 19 shows how the pressure response changes with 
frequency.  Note that the transition from the near field to 
the far field is generally smoother for an arc than for a 
line source at all lengths and frequency. 

4.3 Pressure Field of Arc Sources 
The two-dimensional pressure field of an arc source is 

given by 
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where m is an integer, 2m+1 is the number of point sources, and φ is 
the angle subtended between any two adjacent point sources. 
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The geometric construction is shown in Figure 20.  Figure 
21 shows the pressure field of a uniform arc source, 
where A(φ)=A and ϕ(φ)=0, in several frequency bands.  
The response is quite different from that produced by a 
uniform straight-line source.  At low frequency, a uniform 
arc source can produce either a lobe or a null on-axis.  At 
mid and high frequency a wedge pattern is produced that 
corresponds to the included angle of the arc. 

5 J-SOURCES 
A J-source is comprised of a line source and an arc 

source.  Generally, the straight segment is located above 
the arc segment and is intended to provide the long throw 
component of the polar response.  The arc segment is 
intended to provide coverage in the area below and in 
front of the source.  Together the segments provide an 
asymmetric polar response in the vertical plane.   

5.1 Polar Response of J-Sources 
The directivity function of a J-source is obtained by 

combining the directivity functions of the line and arc 
sources presented in previous sections.  The geometric 
construction is shown in Figure 22 where L is the length 
of the straight segment and R and θ specify the arc 
segment.  We assume that the straight and arc segments 
are adjacent and that the center point of the arc is on a line 
perpendicular to the straight segment through its lower 
endpoint. 

If we choose the center point of the line segment as the 
origin, then the pressure radiated from the line segment in 
the far field at off-axis angle α is 
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as shown in Section 3.1.  Here, AL(l) and ϕL(l) are the 
amplitude and phase functions of the line segment.  Now, 
since we must rotate the arc segment by θ/2 relative to the 
horizontal, we will also change the limits of integration.  
The pressure radiated in the far field from the rotated arc 
source is 
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where  
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and AA(φl) and ϕΑ(lφ) are the amplitude and phase 
functions of the arc segment.  To properly sum the 
radiated pressure from the line and arc segments, a new 
function is required to express the relative distance 
difference between them.  Referring to Figure 22, it is 
given as 
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The general form for the radiated pressure in the far field 
of a J-source is then 
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If we assume that the amplitudes per-unit-length are 
uniform over the line and arc segments, and that the phase 
shifts are zero, the relative source strengths are 
proportional to their relative lengths.  Letting AL and AA 
be the constant amplitudes-per-unit length of the line and 
arc segments respectively, the directivity function of a J-
source reduces to 
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The contributions of the line segment and the arc segment 
to the polar response of a uniform J-source are shown in 
Figure 23.  As expected, the line segment provides long 
throw and the arc segment provides a relatively wide 
angle of coverage rotated downward.  The response of the 
J-source is a blend of the two. 

The polar response of a J-source changes with the 
length of the line segment, the radius and included angle 
of the arc segment, the relative amplitudes of the two 
segments, and frequency.  Figure 24 shows polar response 
curves of a J-source with a two-meter long line segment, a 
one-meter radius, a 60° included angle and equal 
amplitudes-per-unit-length.  The polars show that the 
straight segment of the J-source dominates the response 
and produces a very narrow beam, particularly at high 
frequency.  The arc segment does not fully balance the 
high gain of the straight segment.   

There are several approaches to providing a more 
balanced response.  One is to make the straight segment 
shorter thereby reducing the gain.  A second is to increase 
AA relative to AL.  For instance, one might use a J-source 
that has a one-meter long straight segment (as opposed to 
2-meter in the previous example) and set AA = 2AL 
(instead of AA=AL).  The polar response of this modified J-
source is considerably more balanced than the uniform J-
source as shown in Figure 25. 

5.2 On-Axis Pressure Response J-Sources 
The on-axis pressure response of a J-source is obtained 

by combining the pressure response functions of the line 
and arc sources presented above.  The geometric 
construction is shown in Figure 26 where L is the length 
of the straight segment and R and θ specify the arc 
segment.  Note that the lower endpoint of the arc segment 
is taken as the initial point for the on-axis response.  
Based on this geometry, the pressure radiated at point P 
from a J-source is  
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where  
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and 
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Figure 27 compares the on-axis pressure response of 

uniform equivalent-length straight line and J-sources, 
where A(φ)=A.  The straight segment of the J-source 
dominates the response, producing undulations in the near 
field very similar to those of the straight-line source.  
However, the on-axis aperture of the J-source is 
foreshortened relative to the equal-length line source so 
the distance to the far field is marginally shorter.   

5.3 Pressure Field of J-Sources 
The geometric construction for the pressure field of a J-

source is shown in Figure 28.  The general form for the 
pressure at P is  
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22 )(),,( lyxlyxrL ++=   
and 
 

22 )sin())cos1((),,( φφφ RR +++−+= LyxyxrA

 
 
The pressure field of a uniform J-source, where A(φ)=A 
and ϕ(φ)=0  in several frequency bands is shown in 
Figure 29.  The parameters of the J-source are the same as 
those used for the modified J-source as described in 
Section 5.1, i.e. a one-meter straight segment and AA = 
2AL.  These plots show clearly that a J-source is a blend of 
straight and arc sources.  This is particularly true at mid 
and high frequency where the constituent responses are 
easily identifiable.  

6 PROGRESSIVE SOURCES 
Like a J-source, a progressive source provides an 

asymmetric polar response in the vertical plane.  
However, unlike a J-source it is a continuous curve rather 
than two distinct segments.  The curvature increases with 
distance along the curve.  This results in an upper portion 
that is largely straight and a lower portion that is curved 
downward.   

6.1 Polar Response of Progressive 
Sources 

There are numerous possible mathematical expressions 
for progressive expansions, each providing different rates 
of curvature.  The relevant set of expressions for 
loudspeaker arrays is characterized by curvature changes 
at equal intervals of length along the progressive curve.  
The interval corresponds to the height of a single 
loudspeaker enclosure of the array.   

An arithmetic progressive source is one for which the 
angle between successive enclosures changes by a 
predetermined angle given by (n-1)∆θ where n is the nth 
enclosure and 1 < n < N where N is the total number of 
enclosures in the array.  For example, if ∆θ =1° and the 
first enclosure is hung at 0° (horizontal), the second 
enclosure would be hung at 1° relative to the first 
enclosure and the third at 2° relative to the second 
enclosure.  This defines a progressive curve where the 
aiming angle of the nth enclosure is oriented to the 
horizontal axis by 0°, 1°, 3°, 6°, 10°, and so on - an 
arithmetic expansion.  An incremental angle ∆θ of 2° 
would yield 0°, 2°, 6°, 12° and, 20°.  The terminal angle 
Ω of an array, i.e. the aiming angle relative to the 
horizontal of the last enclosure, is given by 

 

θ∆+=Ω )1(
2
1 NN  

 
where N is the total number of enclosures.  The total 
length of the source is 

 
NHL =  

 

where H is the height of a single enclosure.  These two 
terms, Ω and L, fully define an arithmetic progressive 
source. 

The far field directivity function of an arithmetic 
progressive source is derived in the same manner used 
earlier for the line, arc, and J sources.  The pressure 
radiated along the source is summed at a point P in the far 
field.  The shape of the polar response curves will be 
determined primarily by the small distance function rs. 

The first step is to express the progressive as a 
continuum of small radiating segments of length ∆L.  ∆L 
should be chosen to be a small fraction of the shortest 
wavelength of interest.  As a practical guideline, ∆L 
should be set approximately equal to one-quarter of a 
wavelength, that is,  
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The progressive source can then be expressed in 
parametric form as 
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The geometric construction of an arithmetic 

progressive source is shown in Figure 30.  Its far field 
directivity function is 
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The far field directivity function for a uniform 

progressive source, where Aσ = A and ϕσ = 0, is  
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where rS is given above.  The polar response of a uniform 
arithmetic progressive source is remarkably constant with 
frequency.  Figure 31 shows the polar response curves of 
a 5-meter long progressive source with a terminal angle of 
45°.   

6.2 On-Axis Pressure Response 
Progressive Sources 

The geometric construction for the on-axis pressure 
response of a progressive source is shown is Figure 32.  
The pressure response along a path from the lower end is 
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Figure 33 compares the on-axis response curves of 

equivalent length uniform straight-line and progressive 
sources.  These curves show that the progressive source 
has reduced undulations in the near field and a smoother 
transition from the near field to the far field.   

6.3 Pressure Field of Progressive Sources 
The geometric construction for the pressure field of a 

progressive source is shown in Figure 34.  The pressure at 
any point P is  
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The pressure field of a uniform progressive source in 
several frequency bands is shown in Figure 35.  These 
results illustrate the well-behaved asymmetrical response 
of a progressive source that makes them an excellent 
geometry upon which to base loudspeaker arrays for 
sound reinforcement applications. 
 

7 ADVANCED TOPICS 
As a practical matter, large line arrays of loudspeakers 

are not perfectly continuous line sources.  For instance, 
they may have gaps in between the loudspeaker 
enclosures due to enclosure construction material or 

spacing.  These gaps are effectively non-radiating 
portions of the line and may have an effect on the 
performance of the array.  Also, certain radiating elements 
in loudspeaker line arrays may produce radial wave fronts 
instead of pure, flat wave fronts.  This may also have an 
effect on the performance of the array.  These topics are 
analyzed in the following sections.   

7.1 Gaps in Line Sources 
In previous sections, we assume that each type of line 

source entire length is continuous along its entire length.  
In practice, however, it may not be possible to achieve 
this.  For instance, the thickness of the material used to 
construct a loudspeaker enclosure does not radiate 
acoustic energy.  When loudspeaker enclosures are 
stacked into an array, these non-radiating segments are 
distributed along the length of the array.  This can be 
modeled by limiting the integration of the line source to 
the radiating portions only.  Referring to Figure 36, d is 
the dimension of the non-radiating element on either side 
of the radiating element.   

The directivity function of a line source with N 
elements of length L and gaps between them is  
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In general, gaps have very little effect on the primary 

lobe but change the structure of the off-axis lobes and 
nulls.  Figure 37 shows the linear polar response( )9  of a 
four-element uniform line source with gaps.  The graphs 
show the effects of changing the radiating percentage 
from 100% to 90%, 75% and 50%.  At low frequency, 
where the gap length is a small fraction of the 
wavelength, gaps have very little effect.  At high 
frequency, the side lobe structure changes materially with 
gap length.  The lobes get wider and change position.   

Contemporary loudspeaker line array enclosures are 
usually designed to maximize the radiating percentage.  If 
an enclosure is .5 meters high and constructed out of 
typical materials, radiating percentages can exceed 90%.  
However, if the spacing between enclosures gets large, 
gaps may exceed this threshold and the polar response 
will be affected. 

7.2 Stack of Arc Sources vs. Line Sources 
In practice, certain components of a loudspeaker 

system may produce wave fronts that are curved instead 
of perfectly straight.  When stacked in an array, these may 
more closely resemble a stack of arc sources rather than a 
continuous straight-line source.  Figure 38 shows a stack 
of three arc sources representing an array of three 
loudspeaker components with radial wave fronts.  The 

                                                 
9  Linear polar response is a rectilinear representation of the polar 

response, i.e. dB along the y-axis and angle along the x-axis. 
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effects that radial wave fronts have on the directivity 
function can be estimated by summing the radiation from 
a stack of arc sources.   

As derived in Section 4.1, the directivity function of a 
uniform arc source is 
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and R is the radius and θ is the included angle of the arc.  
The directivity function of a stack of arc sources is 
obtained by applying the first product theorem( )10 .  In this 
case, the directivity function of the arc is multiplied by 
the directivity function of an array of simple sources.  The 
far field directivity function for an array of N simple 
sources of equal amplitude and phase distributed a 
distance D apart along a line is given by 
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Applying the first product theorem, the directivity 

function of a vertical stack of arc sources is 
 

)()()( ααα PAAP RRR = . 
 
Figure 39 shows the effects of non-flat wave fronts on 

the directivity function of the sources, compared to a 
perfectly flat wave front.  As with gaps in a line source, 
curvature primarily produces changes in the lobe/null 
structure of the off-axis response.  The changes increase 
with increasing curvature and are more predominant when 
the curvature is a material fraction of a wavelength. 

Figure 39a compares the directivity function of a 
uniform line source of length 3L with an array of three 
curved sources of length L, where the curvature δ of the 
arc is one-eighth wavelength.  The directivity functions 
are very similar, with only small differences in the 
lobe/null structure.  In particular, note that the nulls at 
approximately 18º, 35º and 60º are not as deep with the 
stack of arc sources.   

Figures 39b and 39c show the directivity functions of 
the uniform line and the three-element array at curvatures 
of ¼ and ½ wavelengths.  In these cases, lobes gradually 
replace the nulls at 18º, 35º and 60º.  At ¼ wavelength, 
the lobe at 18º is approximately 10dB below the level of 
the on-axis lobe, up from approximately 20dB.  This 
represents a practical limit to curvature that maintains, 

                                                 
10  The first product theorem states that the directional factor of an array 

of identical sources is the product of the directional factor of the array 
and the directional factor of a single element of the array.  See Kinsler,  
Frey, Coppens and Sanders “Fundamentals of Acoustics”, forth 
edition, John Wiley and Sons, 1982.   

generally speaking, the directivity function of a pure line 
source.  The response at ½ wavelength is unacceptable as 
the 18º lobe is here nearly equal in amplitude to the 
primary lobe. 

This ¼ wavelength limit on curvature allows us to 
estimate, for a given curvature, the practical upper 
frequency limit for which it maintains the directivity 
response of a uniform line source.  If a source has an 
element length L of 15 cm and a total arc angle of 20º  
then  
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and the upper frequency limit is 
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4
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Polar response curves of a stack of three 15cm high, 

20º sources are shown in Figure 40.  The data are 
superimposed over the polar response of a line source 
45cm long.  The 20º source tends to merge the third and 
fourth off-axis lobes.  The amplitude of this merged lobe 
increases with frequency.  At approximately 12.5kHz the 
lobes are 10dB below the primary on-axis lobe.  This 
corresponds closely to the 13kHz estimate above. 

8 APPLICATIONS 
The mathematical models developed in the previous 
sections will provide useful estimates of the performance 
of many types of loudspeaker line arrays.  However, the 
accuracy of the estimates may be compromised by several 
factors.  First, real-life loudspeaker systems do not often 
behave like perfect sources.  In addition to the gaps and 
radial wavefronts discussed in Section 8, other potential 
factors include cone or diaphragm breakup, suspension 
and magnetic non-linearities, and enclosure resonance and 
edge (diffraction) effects.  Second, collecting far field 
data can be problematic since the microphone must be 
placed at large distances.  Most anechoic chambers 
provide adequate distances to measure only relatively 
small arrays.  Large arrays can be measured outdoors but 
environmental factors such as wind and atmospheric 
turbulence may affect results.  Alternatively, data may be 
taken in a large indoor space but the acoustical 
characteristics of the room must be isolated and removed 
from the measurements.  Nonetheless, despite all of these 
potential sources of errors, useful estimates can be 
produced as illustrated in the following sections. 

8.1 Example 1: Small Straight Line Array – 
Low Frequency Model 

The first example compares the modeled polar 
response of a small straight-line array against measured 
results.  The array is comprised of six small horns stacked 
in a vertical array as shown in Figure 41.  Each horn is 
approximately 8 inches tall resulting in an array 48 inches 
high.  Polar data were collected on this array at a distance 
of 15 feet in an anechoic chamber.  See Ureda [23]. 
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The most straightforward approach to model this array 
is to assume that it is a uniform straight-line source.  This 
assumption will hold at low frequency where the mouth is 
less than one wavelength high.  Since this horn has a 
mouth11 height of approximately 6.5 inches, the highest 
useable frequency of the model is approximately 2kHz.  
From Section 3.2, the directivity function of a uniform 
line source is  
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where in this case L = 48 inches.  Figure 42 shows 
measured versus modeled polar response.  Note that the 
model assumes a sine wave input that yields a very fine 
lobe and null structure.  The measured data are 1/3 octave 
pink noise that tends to fill the sharp nulls of a sine wave 
response.  Nonetheless, the modeled response closely 
resembles the measured data.  Note that the 1.5” gaps 
between the horn mouths do not materially affect the 
modeled performance.  

8.2 Example 2:  Small Straight Line Array – 
High Frequency Model 

The polar response estimate of the six-horn array 
described in Section 8.1 can be extended to higher 
frequency if we use a stack of arc sources model instead 
of a uniform straight line.  This is reasonable since the 
polar response of the individual horns will approach the 
vertical coverage angle at higher frequency.  The horns 
have a vertical coverage angle of 20 degrees.  Using the 
directivity function of a stack of uniform arc sources from 
Section 7.2 where  
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11 The horn is 8 inches tall but the mouth is only 6.5 inches because 

mounting flanges on either side of the mouth are ¾ inches wide.  

 
and setting N = 6, L = 6.5”, D = 8” and θ = 20º we obtain 
the polar response curves shown in Figure 43.  Again, the 
curves are based on sine wave response and the measured 
data were collected in 1/3 octave bands of pink noise.  
Nonetheless, the model predicts the grating lobes at the 
higher frequencies.   

8.3 Example 3:  Large Curved Array 
Engebretson [21] recently took polar response data on 

several large arrays.  Among these was an eight element 
curved array.  Each element is approximately ½ meter 
high resulting in a total length of four meters.   Vertical 
polar data were derived from ground-plane MLSSA 
impulse measurements taken at 20 meters on 5-degree 
intervals.  The data were taken inside a vacant airplane 
hangar to prevent wind-borne temperature gradients and 
other disturbances.  Figure 44 shows the array of eight 
cabinets configured for ground plane measurement.  The 
eight boxes are shown set on end with 5-degree splay 
angles between adjacent cabinets. 

This array can be modeled as an arc source with an 
included angle of 40 degrees and an arclength of 4 meters.  
The polar response at standard 1/3-octave center 
frequencies can be estimated using the far field directivity 
function of a uniform arc source.  From Section 4.1, this 
is  
 

∫
−

−=
2
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θ

θ

φ
θ

α φα deR Ajkr
A R

R
 

 
where 
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⎡ +⎥⎦

⎤
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2
sin

2
sin2),( RAr . 

 
The modeled polar response curves are shown in 

Figure 45.  The measured data from Engebretson are 
shown as dots superimposed on the modeled curves.  Note 
that the measured data are at 5-degree increments – the 
directivity function provides continuous curves.  We can 
see that the agreement between measured and modeled is 
quite reasonable.  The large lobes along the sides of the 
polars may be due to diffraction effects or room effects.  
Neither of these effects is accounted for in the model.  
Nonetheless, the model provides a useful estimate of the 
polar response across more than six octaves.  

9 SUMMARY 
This paper provides mathematical models that estimate 

the performance of several types of loudspeaker line 
arrays.  Specifically, models are provided to estimate the 
polar response, on-axis pressure response and pressure 
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fields of straight, curved (arc), “J” and progressive arrays.  
The first few sections of the paper provide a review of 
uniform straight-line sources including derivations of the 
far field polar response, lobe and null structure and 
quarter-power angle as a function of frequency.  The 
remaining sections represent largely new work and are 
summarized as follows: 

First, the pressure response of a line source as a 
function of distance is shown to be dependent upon the 
path along which the response is calculated.  Typically, a 
path is taken normal to the source beginning at its 
midpoint.  This introduces symmetry into the model and 
produces a result that is unique to this origin and path.  
The paper illustrates how different responses are obtained 
by choosing alternate origins.  The paper further notes 
that it is typical to use the midpoint of the source as the 
origin for the normal path to estimate transition distance.  
This understates the complexity of the transition from the 
near field to the far field.  The paper suggests using 
pressure fields instead of pressure response to fully 
capture this complexity and derives the required 
mathematical expressions. 

Second, “J” and progressive line sources are introduced 
and are shown to provide asymmetrical polar responses in 
the vertical plane.  Such asymmetry is useful in many 
sound reinforcement venues and is why so many 
contemporary loudspeaker line arrays are based on these 
configurations.  The paper provides analytical models for 
both types and illustrates typical performance.  Of 
particular note, progressive arrays produce a vertical polar 
response that is remarkably constant with frequency over 
a very wide bandwidth. 

Third, line arrays of real loudspeakers are not perfectly 
continuous line sources and this may introduce anomalies 
into their response.  The paper provides a model that 
shows the effect of gaps in line sources that are 
introduced by the thickness of the loudspeaker enclosure 
construction material.  The model shows that at low 
frequency, where the gap length is a small fraction of the 
wavelength, gaps have very little effect.  At high 
frequency, the side lobe structure changes materially with 
gap length.  The lobes get wider and change position.  As 
a practical matter, contemporary loudspeaker line array 
enclosures are usually designed to maximize the radiating 
percentage, often in excess of 90%.  This minimizes the 
effects of gaps across the useful bandwidth. 

Fourth, real loudspeaker elements may not produce 
perfectly flat wave fronts so that a vertical stack of 
loudspeakers does not provide a perfectly straight-line 
source.  The paper provides an analytical model to 
estimate the effect of curvature of the elemental sources 
of a line array.  It shows that the effects are frequency 
dependent and negligible as long as the curvature is less 
than ¼ wavelength. 

Finally, measured polar response data of two different 
loudspeaker line arrays were compared to modeled 
results.  Generally, the models produce very good 
estimates of actual performance despite the fact that 
loudspeaker non-linearities, enclosure diffraction and 
environmental effects among others are not accounted for.  
Robust results can be obtained for a wide variety of array 
types across an extended frequency range of interest. 
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Figure 1:  Geometric construction for the far 
field directivity function of a line source.
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Figure 2:  Polar response curves of a uniform 
line source.
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increment;
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Figure 3:  Quarter-power angle of a uniform 
line source.
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Figure 5:  Geometric construction for 
calculating the on-axis pressure response of a 
line source (midpoint convention).

pmid(x)
x

rmid(x,l)

l

L

Line source

(x)
x

rmid(x,l)

l

L

Line source

1 10 100 1 .103 1 .104
80

60

40

20

0

Distance

dB

Near field

Far field

Transition
distance

Figure 6:  On-axis pressure response 
(from the midpoint) of a uniform line 
source (4m long, 8kHz).

Figure 4:  Directivity response of uniform 
line sources 1, 2, 4 and 8 meters long.
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Figure 9:  Geometric construction to calculate 
the pressure response along a path 
originating at the endpoint. 
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Figure 10:  Comparison of midpoint and 
endpoint pressure response curves of a 4-m 
uniform line source at 8kHz.
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Figure 7:  On-axis response (from the 
midpoint) of 2, 4 and 8 meter long 
uniform line sources at 8kHz.  The 4 and 
8 meter response curves are offset by 
10dB and 20dB respectively.
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Figure 8:  On-axis response (from the midpoint) 
of a 4-meter uniform line source at 500, 2kHz 
and 8kHz.  The 2kHz and 8kHz response curves 
are offset by 10dB and 20dB respectively.
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Figure 12:  Geometric construction for 
pressure field of a line source.
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Figure 11:  Pressure response along paths 
normal to the line source at various points of 
origin.  (4-meter long at 8kHz)
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plotFigure 13:  Pressure fields of a 4-m line source.  The contour scale numbers are 
removed from the 2kHz, 4kHz and 8kHz plots for clarity. 
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Figure 14:  Geometric construction of an arc 
source for polar response.
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Figure 15:  Polar response curves of an arc 
source.
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Figure 16:  Geometric construction of an arc 
source for on-axis response.
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Figure 17:  On-axis pressure response of an 
arc source and a straight line source at 4kHz. 
The arc source has an included angle of 45° 
and a radius of 4m.  The line source has a 
length equal to the arc length (3.14m).
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Figure 18:  On-axis pressure response of 
three arc sources (θθθθ = 15°, 30° and 60°) at 
8kHz where R=4m.  These correspond to arc 
lengths of approximately 1, 2, and 4 meters. 
The 30° and 60° curves are offset by 10 and 20 
dB respectively.
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Figure 19:  On-axis pressure response of an 
arc source at various frequencies where θθθθ = 
30° and R= 4m.  The arc length is 
approximately 2m.  The 2kHz and 8kHz curves 
are offset by 10 and 20 dB respectively.
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Figure 20:  Geometric construction for arc 
source pressure field.
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plotFigure 21:  Pressure fields of a uniform arc source.
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Figure 22:  Geometric construction of a J-
Source for polar response.
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Figure 23:  Contribution of a line and an arc 
source to the polar response of a J-Source
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Figure 24:  J-source polar response curves – Example 1 
where L=2m, R=1m, θθθθ=60°, AL=1 and AA = 1.
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Figure 25:  J-source polar response curves – Example 2 
where L=1m, R=1m, θθθθ=60°, AL=1 and AA = 2.
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Figure 26:  Geometric construction of a 
J-source for on-axis pressure response.
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Figure 28:  Geometric construction for the 
pressure field of a J-source
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Figure 27:  Comparison at 2kHz of the on-
axis pressure response of a 4 meter long 
straight line source and a J-source where 

L=2m, R=2m, θθθθ=60°, AL=1 and AA = 1.
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plotFigure 29:  Pressure field of a J-source vs. frequency
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Figure 30:  Geometric construction of a spiral 
source for polar response.
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Figure 31:  Polar response of a 5 meter long 
spiral source with a terminal angle of 45°. 
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Figure 32:  Geometric construction of a spiral 
source for on-axis pressure response.
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Figure 34:  Geometric construction for 
pressure field of spiral source.
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Figure 33:  Pressure response 
comparison at 2kHz of a 45° terminal 
angle, 4 meter long spiral source and a 
line source of the same length.
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plotFigure 35:  Pressure fields of spiral source vs. frequency.
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Figure 36:  Line array of four elements of 
length L and non-radiating gap d on either 
end.

Stack of four 
line sources 
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The radiating 
ratio of a 
single source 
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Figure 37:  Directivity function of a 4-element 
line array with radiating percentages of 100%, 
90%, 75% and 50% at three ratios of length to 
wavelength.
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Figure 38:  Stack of three arc sources of 
radius R, included angle θθθθ and curvature δδδδ.
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Figure 39:  Comparison of directivity functions of a stack of three curved 
sources (solid line) and a straight-line source (dotted line).  The curved 
sources have an element length L of 15cm and a total included angle θθθθ of 20 
degrees.  The straight-line source has a total length of 3L.
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Figure 40:  Polar response curves of a stack of three 15cm high, 20º arc 
sources (dotted line) superimposed over the response of a 45cm straight line 
source (solid line).
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Figure 41:  Vertical stack of six 8 inch 
tall, 40º x 20º degree horns.

Figure 42:  Measured (dots) versus modeled (solid line) polar response 
curves of the array in Figure 41.  Model based on uniform straight line source 
and a sine wave input.  Measured data is 1/3 octave pink noise. 
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Figure 43:  Measured (dots) versus modeled (solid line) polar response 
curves of the array in Figure 41.  Model based on a stack of arc sources with 
a sine wave input.  Measured data is 1/3 octave pink noise. 
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Figure 44:  Indoor ground plane setup for vertical 
polar response measurement of an eight element 
curved array.
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Figure 45:  Measured polar response data (dots) shown against 
predicted polar response of eight element curved array.
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