

Engineering Test and Performance Specification

Model Name: Synthesis 8

Part Number: 361072-001

Description: Low distortion Woofer / Midrange

JBL Synthesis Division:

Where Used: Synthesis SAM2LF

Approved Supplier: GGEC

Design Engineer: Jerry Moro

> Approval Sample number: GGEC EPR Standard #O 0622, unit#4

Pages:

10

A Revision:

6/23/06

Engineering Test and Performance Specification

Purpose:

To define and establish a reference for the JBL Engineering approved performance characteristics of the stated model. To define the type of testing, and minimum conditions for testing, of production units of the stated model. To insure that the JBL design and performance intent is met. The performance data contained in this document is taken from the JBL Engineering Reference Standard unit that is held in the Harman Northridge facility.

This document is a JBL Engineering specification only and does not attempt to establish AQL or Visual acceptance levels or other criteria that are set forth and enforced by the Customer Purchasing, Incoming Inspection, and Quality Assurance groups.

Contents:

- 1) Physical and Mechanical Specifications
- 2) Engineering Test Specification (ETS)

Defines minimum testing for production units and response variation tolerance

3) Performance Specification

T/S Parameters Frequency Response Harmonic Distortion Impedance Supplier Sample Cover Sheet Assembly Drawing

Description: Low distortion Woofer / Midrange Motor Steel and Plating type: Low Carbon Steel (1008 or Equiv.) with Black Zinc plating Frame Type: Cast Aluminum (PEL Squirele style) Frame Finish: Powder Coat, Black Outer Dia. 8.76 inches (7.97 inch across 4 flats) Mounting DepTh: 4.00 inches Mounting Dia: 7.09 inches Overall Height: 4.22 inches Spider: Type: 5-Progressive roll (Nomex) Color: Brown Trim Ring: Type: Integrated with Surround Color: Black with slight texture Surround: Type: OMMD Color: Black Tome: Type: CMMD Color: Black Dome: Type: CMMD Color: m/a Rear Gasket: Type::125 thk, med density Foam type Color: m/a Timsel Lead Type: Standard push-on lugs Lug Size: 205 / 250 Polarity: ELA STND - Positive applied to .250 terminal moves cone away from magnet Voice Coil: Diameter: \$1.5mm (2 inch) Wire: CCAR Ribbon 0.50x0 120mm, Edge wnd. Layers: 1 Former: Hightemp. 10mm CEB Winding Length: 16.0mm <th>Model #</th> <th>Synthesis 8</th> <th></th> <th></th> <th></th> <th>Part #</th> <th>361072</th> <th>2-001</th> <th></th>	Model #	Synthesis 8				Part #	361072	2-001	
Motor Steel and Plating type: Low Carbon Steel (1008 or Equiv.) with Black Zine plating Frame Type: Cast Aluminum (TEL Squirele style) Frame Finish: Powder Coat, Black Outer Dia. 8.76 inches (7.97 inch across 4 flats) Mounting Depth: 4.00 inches Mounting Dia: 7.09 inches Overall Height: 4.22 inches Spider: Type: 5-Progressive roll (Nomex) Color: Black with slight texture Surround: Type: Integrated with Surround Color: Black with slight texture Cone: Type: CMMD Color: Black Dome: Type: CMMD Color: Black Front Gasket: Type: CMMD Color: m/a Tinsel Lead Type: Standard posh-on lugs Lug Size: 205 / .250 Polarity: ELA STND - Positive applied to .250 terminal moves one away from magnet Voice Coil: Diameter: 51.5mm (2 inch) Wire: CCAR Ribbon 0.50x0 120mm, Edge wnd. Layers: 1 Former: Hightemp.102mm, CEB Magnet: 902 size 102 size 102 size 102 mm 102 mm 102 mm Shield Magnet: Type: Nee-38SH	Description	ption: Low distortion Woofer / Midrange							
Frame Type: Cast Aluminum (TBL Squirele style) Frame Finish: Powder Coat, Black Mounting Dia: 7.09 inches 7.09 inches Overall Height: 4.22 inches Spider: Type: 5-Progressive roll (Nomex) Color: Brown Color: Black with slight texture Spider: Type: Integrated with Surround Color: Black with slight texture Color: Black with slight texture Surround: Type: MBR nubber 60 Shore A Color: Black with slight texture Color: Black Cone: Type: CMMD Color: Ilack Color: Black Dome: Type: CMMD Color: Ilack Color: Black Front Gasket: Type: CMMD Color: Ilack Color: Ilack Tinsel Lead Type: Slandard push-on lugs Lug Size: 205 / .250 Polarity: ELA STND - Positive applied to .250 terminal moves cone away from magnet Voice Coil: Diameter: 51.5mm (2 inch) Wire: CCAR Ribbon 0.50x0 120mm, Edge wnd. Layers: 1 Former: Hightemp .10mm CEB Wrapper: Hightemp .10mm CEB Winding Length: 16.0mm DCR: 8.4 Ohms +/- 5%	Motor Steel	and Plating type:		Low Corbon St	tool (1008 c	Fauir)	with Pl	ook Zino plating	
Trim time:Colspan="2">Colspan="2"Colspa	Frame Type	Cast Aluminun	(TBLS	Souimle style)	Frame	Finish	wiui Di	Powder Cost B	lack
Mounting Dia: 7.09 inches Overall Height: 4.22 inches Spider: Type: S-Progressive roll (Nomex) Color: Brown Trim Ring: Type: Integrated with Surround Color: Black with slight texture Surround: Type: NBR nibber 60 Shore A Color: Black with slight texture Cone: Type: CMMD Color: Black with slight texture Dome: Type: CMMD Color: Black Dome: Type: CMMD Color: Islack Front Gasket: Type: CMMD Color: Islack Tinsel Lead Type:Silver/Cad-free/Copper-twisted Attachment: Soldered to Coil patches Terminal: Type:Standard push-on lugs Lug Size: 205 / .250 Polarity: ELA STND - Positive applied to .250 terminal moves cone away from magnet Voice Coil: Diameter: \$1.5mm (2 inch) Wire: CCAR Ribbon 0.50x0 120mm, Edge wnd. Layers: 1 Former: Highternp125mm (Til) Fiberglass Turns: 109 +/-2 Wrapper: Highternp10mm CEB Winding Length : 16.0mm DCR: 8.4 Ohms +/- 5%	Outer Dia.	8.76 inches (7	97 inch	across 4 flats)	Mount	ing Den	th:	4 00 inches	HOR
Spider: Type: 5-Frogressive roll (Nomex) Color: Brown Trim Ring: Type: Integrated with Surround Color: Black with slight texture Surround: Type: NBR rubber 60 Shore A Color: Black with slight texture Cone: Type: CMMD Color: Black with slight texture Dome: Type: CMMD Color: Black Color: Front Gasket: Type: CMMD Color: n/a Color: Black Color: Black Front Gasket: Type: CMMD Color: n/a Color: n/a Tinsel Lead Type: Siber/Cad-free/Copper-twisted Attachment: Soldered to Coil patches Terminal: Type: Standard push-on lugs Lug Size: .205 / .250 Polarity: ELA STND - Positive applied to .250 terminal moves cone away from magnet Voice Coil: Diameter: \$1.5mm (2 inch) Wire: CCAR Ribbon 0.50x0 120mm, Edge wnd. Layers: 1 Former: Hightemp .10mm CEB Winding Length: 16.0mm Magnet: Type: Neo-	Mounting D	ia: 7.09 inches			Overal	l Heigh	t:	4.22 inches	
Spring S-Progressive roll (Womex) Color: Elock with slight texture Trim Ring: Type: Integrated with Surround Color: Elack with slight texture Surround: Type: OMMD Color: Elack with slight texture Cone: Type: CMMD Color: Elack with slight texture Dome: Type: CMMD Color: Elack Dome: Type: CMMD Color: Elack Front Gasket: Type: CMMD Color: Iack Tinsel Lead Type: Ister/Cad-free/Coppertwisted Attachment: Soldered to Coll patches Terminal: Type: Standard push-on lugs Lug Size: 205 / 250 Polarity: ELA STND - Positive applied to .250 terminal moves cone away from magnet Voice Coil: Diameter: 51.5mm (2 inch) Wire: CCAR Ribbon 0.50x0.120mm, Edge wnd. Layers: 1 Former: Hightemp .10mm CEB Winding Length : 16.0mm DCR: 84 Ohms +/- 5% Perforations: Yes, 2 rows of 10 at 4mm diameter Thickness: 10.2mm Magnet: Type: Neo-38SH OD: 33.0mm Thick	Cuidon	Tuna	6 D		-	Calar	. D		
Num Rung: Type: Integrated with Surround Color: Black with sight texture Surround: Type: OBM Color: Black Color: Black Dome: Type: CMMD Color: Black Color: Black Front Gasket: Type: CMMD Color: Black Color: Black Front Gasket: Type: CMMD Color: n/a Color: Black Front Gasket: Type: CMMD Color: Indegrated with sight texture Color: Black Front Gasket: Type: CMMD Color: Indegrated with sight texture Front Gasket: Type: CMMD Color: Black Timsel Lead Type: Color: Black Terminal: Type: Standard push-on lugs Lug Size: Color: Black Voice Coil: Diameter: 51.5mm (2 inch) Wire: CCAR Ribbon 0.50x0 120mm, Edge wnd. Layers: 1 Former: Hightemp .10zmm (Til) Fiberglass Turns: 109 +/.2 Wrapper: Hightemp .10mm CEB	Spider:	Type:	5-Prog	gressive roll (Noi	mex)	Color:	Brown	- 11 - 11 - 1 - 1	
Surround. Type: NBK hubber do Shore A Codor: Elack with sight texture Cone: Type: CMMD Color: Black Dome: Type: CMMD Color: Black Front Gasket: Type: 125 thk, med density Foam type Color: n/a Rear Gasket: Type: Silver/Cad-free/Copper-twisted Attachment: Soldered to Coil patches Terminal: Type: Standard push-on lugs Lug Size: .205 / .250 Polarity: ELA STND - Positive applied to .250 terminal moves cone away from magnet Voice Coil: Diameter: 51.5mm (2 inch) Wire: CCAR Ribbon 0.50x0 120mm, Edge wnd. Layers: 1 Former: Hightemp .125mm (Til) Fiberglass Turns: 109 +/-2 Wrapper: Hightemp .10mm CEB Winding Length: 16.0mm DCR: &4 0hms +/- 5% Perforations: Yes, 2 rows of 10 at 4mm diameter Thickness: 10.2mm Magnet: Type: Neo-38SH OD: 33.0mm Thickness: 10.2mm Shield Magnet: Type: Neo-38SH OD: 33.0mm Thickness: 10.2mm Shield Magnet is mounted above p	Surround:	Type:	Integr	Integrated with Surroun		Color	r: Black with slight texture		
Conte: Type: Contail Contail Contail Dome: Type: CMMD Color: Black Front Gasket: Type: CMMD Color: n/a Tinsel Lead Type: Silver/Cad-free/Copper-twisted Attachment: Soldered to Coil patches Terminal: Type: Standard push-on lugs Lug Size: 205 / .250 Polarity: ELA STND - Positive applied to .250 terminal moves cone away from magnet Voice Coil: Diameter: 51.5mm (2 inch) Wire: CCAR Ribbon 0.50x0.120mm, Edge wnd. Layers: 1 Former: Hightemp .125mm (Til) Fiberglass Turns: 109 +/-2 Wrapper: Hightemp .10mm CEB Winding Length: 16.0mm DCR: 84 Ohms +/- 5% Perforations: Yes, 2 rows of 10 at 4mm diameter Top Plate: Thickness: 15.10mm Magnet: Type: Neo-38SH OD: 49.6mm Thickness: 15.10mm Shield Magnet: Type: Neo-38SH OD: 33.0mm Thickness: 10.2mm Shield Magnet: Yes or No n/a OD:	Conor	Type.	CLOK	nober og anore.	A	Color:	Diack	with slight texture	
Front Gasket: Type: Color: n/a Rear Gasket: Type: Silver/Cad-free/Copper-twisted Attachment: Soldered to Coil patches Tinsel Lead Type: Standard push-on lugs Lug Size: .2057.250 Polarity: ELA STND - Positive applied to .250 terminal moves cone away from magnet Voice Coil: Diameter: \$1.5mm (2 inch) Wire: CCAR Ribbon 0.50x0 120mm, Edge wnd. Layers: 1 Former: Hightemp .125mm (Til) Fiberglass Turns: 109 +/-2 Wrapper: Hightemp .10mm CEB Winding Length: 16.0mm DCR: 84 Ohms +/- 5% Perforations: Yes, 2 rows of 10 at 4mm diameter Top Plate: Thickness: 8.0mm Magnet: Type: Neo-38SH OD: 49.6mm Thickness: 15.10mm Shield Magnet: Type: Neo-38SH OD: 33.0mm Thickness: 10.2mm Shield Magnet is mounted above pole piece and charged opposite of main magnet. Pole piece incorporates a Copper cap to lower distortion (Inductance modulation control and 3rd Harmonic). Also incorporates JBL Flux Stabilization ring captured between the Pot and Top plate. A 2.5mm spider spacer ring increases spider to top plate	Cone:	Type:	CMM			Color	Diack		
Front Gasket: Type: None Color: n/a Rear Gasket: Type: 125 thk, med density Foam type Color: n/a Tinsel Lead Type: Silver/Cad-free/Copper-twisted Attachment: Soldered to Coil patches Terminal: Type: Standard push-on lugs Lug Size: .205 / .250 Polarity: EIA STND - Positive applied to .250 terminal moves cone away from magnet Voice Coil: Diameter: \$1.5mm (2 inch) Wire: CCAR Ribbon 0.50x0.120mm, Edge wnd. Layers: 1 Former: Hightemp .125mm (Til) Fiberglass Turns: 109 +/-2 Wrapper: Hightemp .10mm CEB Winding Length: 16.0mm DCR: 8.4 Ohms +/- 5% Perforations: Yes, 2 rows of 10 at 4mm diameter Thickness: 15.10mm Magnet: Type: Neo-38SH OD: 49.6mm Thickness: 15.10mm Shield Magnet: Type: Neo-38SH OD: 33.0mm Thickness: 15.10mm Shield Can: Yes or No n/a OD: 14.20mm Thickness: 15.10mm Shield Magnet is mounted above pole piece and charged opposite of main magnet.	Dome:	Type	CIVIIVI	D	-		DIACK		
Rear Gasket: Type: 125 thk, med density Foam type Color: n/a Tinsel Lead Type: Silver/Cad-free/Copper-twisted Attachment: Soldered to Coil patches Terminal: Type: Silver/Cad-free/Copper-twisted Lug Size: 205 / .250 Polarity: EIA STND - Positive applied to .250 terminal moves cone away from magnet Voice Coil: Diameter: 51.5mm (2 inch) Wire: CCAR Ribbon 0.50x0.120mm, Edge wnd. Layers: 1 Former: Hightemp .1025mm (Fil) Fiberglass Turns: 109 +/-2 Wrapper: High temp .10mm CEB Winding Length: 16.0mm DCR: 8.4 Ohms +/- 5% Perforations: Yes, 2 rows of 10 at 4mm diameter Thickness: 10.0mm Magnet: Type: Neo-38SH OD: 49.6mm Thickness: 10.0mm Shield Magnet: Type: Neo-38SH OD: 33.0mm Thickness: n/a Shield Can: Yes or No n/a OD: 33.0mm Thickness: n/a Design is Neodymium Motor with main Neo 38SH grade Magnet below Pole. Shield Magnet is mounted above pole piece and charged opposite of main m	Front Gask	et: Type:None			Color:	n/a			
Tinsel Lead Type: Silver/Cad-free/Copper-twisted Attachment: Soldered to Coil patches Terminal: Type: Standard push-on lugs Lug Size: .205 / .250 Polarity: ELA STND - Positive applied to .250 terminal moves cone away from magnet Voice Coil: Diameter: 51.5mm (2 inch) Wire: CCAR Ribbon 0.50x0.120mm, Edge wnd. Layers: 1 Former: Hightemp .125mm (Til) Fiberglass Turns: 109 +/-2 Wrapper: Hightemp .10mm CEB Winding Length: 16.0mm DCR: &4 Ohms +/- 5% Perforations: Yes, 2 rows of 10 at 4mm diameter Top Plate: Thickness: 8.0mm Magnet: Type: Neo-38SH OD: 49.6mm Thickness: 10.2mm Shield Magnet: Type: Neo-38SH OD: 33.0mm Thickness: n/s Shield Can: Yes or No n/a OD: n/a Thickness: n/s Design is Neodymium Motor with main Neo 38SH grade Magnet below Pole. Shield Magnet is mounted above pole piece and charged opposite of main magnet. Pole piece incorporates a Copper cap to lower distortion (Inductance modulation control and 3rd Harmoni	Rear Gaske	t: Type: 125 th	Type: 125 thk med density Foam type		e Color:	n/a			
Terminal: Type: Standard push-on lugs Lug Size: .205 / .250 Polarity: ELA STND - Positive applied to .250 terminal moves cone away from magnet Voice Coil: Diameter: 51.5mm (2 inch) Wire: CCAR Ribbon 0.50x0.120mm, Edge wnd. Layers: 1 Former: Hightemp .125mm (Til) Fiberglass Turns: 109 +/-2 Wrapper: High temp .10mm CEB Winding Length: 16.0mm DCR: 8.4 Ohms +/- 5% Perforations: Yes, 2 rows of 10 at 4mm diameter Thickness: 15.10mm Magnet: Type: Neo-38SH OD: 49.6mm Thickness: 15.10mm Shield Magnet: Type: Neo-38SH OD: 33.0mm Thickness: 10.2mm Shield Can: Yes or No n/a OD: 33.0mm Thickness: 10.2mm Shield Magnet: Type: Neo-38SH OD: 33.0mm Thickness: 10.2mm Shield Can: Yes or No n/a OD: 31.7mm In/a Thickness: 10.2mm Shield Magnet is mounted above pole piece and charged opposite of main magnet. Pole piece incorporates a Copper	Tinsel Lead	Lead Type: Silver/Cad-free/Co		/Copper-twisted	Attach	ment:	Soldered to Coil patches		
Polarity: EIA STND - Positive applied to .250 terminal moves cone away from magnet Voice Coil: Diameter: 51.5mm (2 inch) Wire: CCAR Ribbon 0.50x0 120mm, Edge wnd. Layers: 1 Former: Hightemp .125mm (Til) Fiberglass Turns: 109 +/-2 Wrapper: Hightemp .125mm (Til) Fiberglass Winding Length: 16.0mm DCR: 8.4 Ohms +/- 5% Perforations: Yes, 2 rows of 10 at 4mm diameter Magnet: Type: Neo-38SH OD: 49.6mm Thickness: 15.10mm Shield Magnet: Type: Neo-38SH OD: 33.0mm Thickness: 10.2mm Shield Can: Yes or No n/a OD: 33.0mm Thickness: 10.2mm Notes: Design is Neodymium Motor with main Neo 38SH grade Magnet below Pole. Shield Magnet is mounted above pole piece and charged opposite of main magnet. Pole piece incorporates a Copper cap to lower distortion (Inductance modulation control and 3rd Harmonic). Also incorporates JBL Flux Stabilization ring captured between the Pot and Top plate. A 2.5mm spider spacer ring increases spider to top plate.	Terminal:	Type: Standar	Type: Standard push-on lugs			Lug Size: .205 / .250			
Voice Coil: Diameter: 51.5mm (2 inch) Wire: CCAR Ribbon 0.50x0.120mm, Edge wnd. Layers: 1 Former: Hightemp .125mm (Til) Fiberglass Turns: 109 +/-2 Wrapper: Hightemp .125mm (Til) Fiberglass Winding Length : 160mm DCR: 84 Ohms +/- 5% Perforations: Yes, 2 rows of 10 at 4mm diameter Magnet: Type: Neo-38SH OD: 49.6mm Thickness: 15.10mm Shield Magnet: Type: Neo-38SH OD: 33.0mm Thickness: 10.2mm Shield Can: Yes or No n/a OD: n/a Thickness: 10.2mm Notes: Design is Neodymium Motor with main Neo 38SH grade Magnet below Pole. Notestiel Magnet is mounted above pole piece and charged opposite of main magnet. Pole piece incorporates a Copper cap to lower distortion (Inductance modulation control and 3rd Harmonic). Also incorporates JBL Flux Stabilization ring captured between the Pot and Top plate. A 2.5mm spider spacer ring increases spider to top plate.		Polarity:	Polarity: EIA STND - Positive ar		applied to .2	250 termir	nal move	es cone away from	magnet
Voice Coil: Diameter: 51.5mm (2 inch) Wire: CCAR Ribbon 0.50x0 120mm, Edge wnd. Layers: 1 Former: Hightemp .125mm (Til) Fiberglass Turns: 109 +/-2 Wrapper: Hightemp .10mm CEB Winding Length : 16.0mm DCR: 8.4 Ohms +/- 5% Perforations: Yes, 2 rows of 10 at 4mm diameter 8.0mm Magnet: Type: Neo-38SH OD: 49.6mm Thickness: 15.10mm Shield Magnet: Type: Neo-38SH OD: 33.0mm Thickness: 10.2mm Shield Can: Yes or No n/a OD: n/a Thickness: 10.2mm Notes: Design is Neodymium Motor with main Neo 38SH grade Magnet below Pole. Notes: Shield Magnet is mounted above pole piece and charged opposite of main magnet. Pole piece incorporates a Copper cap to lower distortion (Inductance modulation control and 3rd Harmonic). Also incorporates JBL Flux Stabilization ring captured between the Pot and Top plate. A 2.5mm spider spacer ring increases spider to top plate.	W · A ·	D !			***				
Layers: 1 Former: Hightemp .125mm (Til) Fiberglass Turns: 109 +/-2 Wrapper: Hightemp .10mm CEB Winding Length : 16.0mm DCR: 8.4 Ohms +/- 5% Perforations: Yes, 2 rows of 10 at 4mm diameter Magnet: Type: Neo-38SH OD: 49.6mm Thickness: 15.10mm Shield Magnet: Type: Neo-38SH OD: 33.0mm Thickness: 10.2mm Shield Can: Yes or No No Notor with main Neo 38SH grade Magnet below Pole. Notes: Design is Neodymium Motor with main Neo 38SH grade Magnet below Pole. Notes: Design is Neodymium Motor with main Neo 38SH grade Magnet below Pole. Shield Magnet is mounted above pole piece and charged opposite of main magnet. Pole piece incorporates a Copper cap to lower distortion (Inductance modulation control and 3rd Harmonic). Also incorporates JBL Flux Stabilization ring captured between the Pot and Top plate. A 2.5mm spider spacer ring increases spider to top plate for the plate.	Voice Coil:	Diameter:	51.5mm (2 inch)		-Wire:	CCARI	Ribbon 0.50x0.120mm, Edge wnd.		ge wnd.
Turns: 109 +/-2 Wrapper: High temp .10mm CEB Winding Length : 16.0mm DCR: 8.4 Ohms +/- 5% Perforations: Yes, 2 rows of 10 at 4mm diameter Top Plate: Thickness: 8.0mm Magnet: Type: Neo-38SH OD: 49.6mm Thickness: 15.10mm Shield Magnet: Type: Neo-38SH OD: 33.0mm Thickness: 10.2mm Shield Can: Yes or No n/a OD: 33.0mm Thickness: 10.2mm Shield Can: Yes or No n/a OD: 10.2mm n/a Thickness: 10.2mm Shield Can: Yes or No n/a OD: 10.2mm n/a Thickness: 10.2mm Shield Can: Yes or No n/a OD: 10.2mm n/a Thickness: 10.2mm Shield Magnet is mounted above pole piece and charged opposite of main magnet. Pole piece incorporates a Copper cap to lower distortion (Inductance modulation control and 3rd Harmonic). Also incorporates JBL Flux Stabilization ring captured between the Pot and Top plate. A 2.5mm spider spacer ring increases spider to top plate and the plate of the pl		Layers:	1		-Former	r <u>:</u>	Hightemp .125mm (Til) Fiberglass		
Winding Length : 16.0mm DCR: 8.4 Ohms +/- 5% Perforations: Yes, 2 rows of 10 at 4mm diameter Yes, 2 rows of 10 at 4mm diameter Top Plate: Thickness: 8.0mm Thickness: 15.10mm Magnet: Type: Neo-38SH OD: 49.6mm Thickness: 15.10mm Shield Magnet: Type: Neo-38SH OD: 33.0mm Thickness: 10.2mm Shield Can: Yes or No n/a OD: n/a Thickness: 10.2mm Shield Magnet: Yes or No n/a OD: n/a Thickness: 10.2mm Shield Can: Yes or No n/a OD: n/a Thickness: 10.2mm Notes: Design is Neodymium Motor with main Neo 38SH grade Magnet below Pole. Shield Magnet is mounted above pole piece and charged opposite of main magnet. Pole piece incorporates a Copper cap to lower distortion (Inductance modulation control and 3rd Harmonic). Also incorporates JBL Flux Stabilization ring captured between the Pot and Top plate. A 2.5mm spider spacer ring increases spider to top plate and top plate.		Turns:	109 +/	(-2	_wrapp	er:	High te	emp .10mm CEB	
Perforations: Yes, 2 rows of 10 at 4mm diameter Top Plate: Thickness: 8.0mm Magnet: Type: Neo-38SH OD: 49.6mm Thickness: 15.10mm Shield Magnet: Type: Neo-38SH OD: 33.0mm Thickness: 10.2mm Shield Can: Yes or No n/a OD: n/a Thickness: n/a Design is Neodymium Motor with main Neo 38SH grade Magnet below Pole. Shield Magnet is mounted above pole piece and charged opposite of main magnet. Notes: Design is Neodymium Motor with main Neo 38SH grade Magnet below Pole. Pole piece incorporates a Copper cap to lower distortion (Inductance modulation control and 3rd Harmonic). Also incorporates JBL Flux Stabilization ring captured between the Pot and Top plate. A 2.5mm spider spacer ring increases spider to top plate.		Winding Le	ength :	16.0mm	-	DCR:		8.4 Ohms +/- 59	/o
Top Plate: Thickness: 8.0mm Magnet: Type: Neo-38SH OD: 49.6mm Thickness: 15.10mn Shield Magnet: Type: Neo-38SH OD: 33.0mm Thickness: 10.2mm Shield Can: Yes or No n/a OD: m/a Thickness: 10.2mm Notes: Design is Neodymium Motor with main Neo 38SH grade Magnet below Pole. Shield Magnet is mounted above pole piece and charged opposite of main magnet. Notes: Design is Neodymium Motor with main Neo 38SH grade Magnet below Pole. Pole piece incorporates a Copper cap to lower distortion (Inductance modulation control and 3rd Harmonic). Also incorporates JBL Flux Stabilization ring captured between the Pot and Top plate. A 2.5mm spider spacer ring increases spider to top plate.	T D	Perforation	s:	Yes, 2 rows of	10 at 4mm	diameter			
Magnet: Type: Neo-38SH OD: 49.0mm Inickness: 15.10mm Shield Magnet: Type: Neo-38SH OD: 33.0mm Thickness: 10.2mm Shield Can: Yes or No n/a OD: n/a Thickness: 10.2mm Notes: Design is Neodymium Motor with main Neo 38SH grade Magnet below Pole. Shield Magnet is mounted above pole piece and charged opposite of main magnet. Pole piece incorporates a Copper cap to lower distortion (Inductance modulation control and 3rd Harmonic). Also incorporates JBL Flux Stabilization ring captured between the Pot and Top plate. A 2.5mm spider spacer ring increases spider to top plate.	Top Plate:		mess:	8.0mm	-			T1.1.1	
Shield Magnet:Type:Neo-38SHOD:33.0mmThickness:10.2mnShield Can:Yes or No n/a OD: n/a Thickness: n/a n/a Design is Neodymium Motor with main Neo 38SH grade Magnet below Pole.Shield Magnet is mounted above pole piece and charged opposite of main magnet.Pole piece incorporates a Copper cap to lower distortion (Inductance modulation control and 3rd Harmonic). Also incorporates JBL Flux Stabilization ring captured between the Pot and Top plate. A 2.5mm spider spacer ring increases spider to top plate.	Magnet:	1 ype:		Neo-38SH		49.6mm	Leine -	- I mckness:	15.10mm
Shield Can: Yes or No n/a OD: n/a Thickness: n/a Notes: Design is Neodymium Motor with main Neo 38SH grade Magnet below Pole. Shield Magnet is mounted above pole piece and charged opposite of main magnet. Pole piece incorporates a Copper cap to lower distortion (Inductance modulation control and 3rd Harmonic). Also incorporates JBL Flux Stabilization ring captured between the Pot and Top plate. A 2.5mm spider spacer ring increases spider to top plate.	Shield Mag	iet: Type:		Neo-38SH	_OD:	33.0mm	L.		10.2mm
Notes: Design is Neodymium Motor with main Neo 38SH grade Magnet below Pole. Shield Magnet is mounted above pole piece and charged opposite of main magnet. Pole piece incorporates a Copper cap to lower distortion (Inductance modulation control and 3rd Harmonic). Also incorporates JBL Flux Stabilization ring captured between the Pot and Top plate. A 2.5mm spider spacer ring increases spider to top plate.	Shield Can:	Y es o	r No	n/a		n/a	40.000	I hickness:	n/a
Pole piece incorporates a Copper cap to lower distortion (Inductance modulation control and 3rd Harmonic). Also incorporates JBL Flux Stabilization ring captured between the Pot and Top plate. A 2.5mm spider spacer ring increases spider to top plate.	Notor: I	Design is Neodymiu	im Mot	or with main	Neo 38SH	I grade	Magne	t below Pole.	-+
control and 3rd Harmonic). Also incorporates JBL Flux Stabilization ring captured between the Pot and Top plate. A 2.5mm spider spacer ring increases spider to top plate.	Notes: S	le piece incorporates a Copper cap to lower distortion (Industance modulation							
between the Pot and Top plate. A 2.5mm spider spacer ring increases spider to top plate.	1	ne prece incorporates a copper cap to lower distortion (inductance modulation							
between the Pot and Top plate. A 2.5min spheer spacer ring increases spheer to top plate	<u>(</u>	onu or and srd Har	tween the Dot and Top plate A 2.5 mm spider spacer ring increases spider to top plate.						
	<u> </u>	ciween uie Poi and	Topp	ate. A 2.5IIII	i spider s	pacer fil	ig incr	eases spider to t	op plate.

	1000				Document Nu	umber	Re
Synthesis	8	Engineerin	g Test Speci	3	63370	A	
. Model Descriptio	n:	Low distortion W	Voofer / Midra	nge			
Model Part # (Part # listed is S/M level _.	361072-001 for systems and M/I	level for transducers)	Design	Engineer:	Jerry Moro		
Shipping Weight:	approx 4.72 11	IS	Packag	ing Test Method	d:		
Dynamic Test: (.	100% test)	Input Voltage (@	lowest sweep	range):	14.0 Vr	ms	
Sweep Range:	500 - 20hz		Sweep	Duration:	4 secon	ds	
Power Test-Prod	uction Audit of	of 6 pcs @ each	h run: (Mus	t EPR Qualij	fy at 100 hou	rs@same spe	c)
nput Signal: Pink N	Voise	Filter: 50 - 5001	Hz,				
Crest Factor: 6	dB	Duration (hours)	: 2 hrs	Input 1	Voltage: 27.0) Vrms	
Impedance: (Rej	f only)	D.C. Resistance:	8.4 6	ohms			
Rated Impedance:	8.0 ohms	Min.Impedance:	9.5 0	ohms Motion	nal Impedance:		
Thiele-Small; See:			Impeda	nce Curve; See			
Driver 1: Driver 2: Driver 5:							
Frequency Resp	onse Test: (1	00% test)					
fic Position (inches)	X.	Y.	Z	X=vert., Y=Horiz, Z = 1	Dist from beffle. 0.0.0 =	lower left corner facing :	sokr front
vorsonar Framancias	(System Raf)		2.				
ametics File Name	(System Ref).			Test Voltage			
timulus File		Gate Lenoth		Preorte Le	noth		
lumber of Stacks		Mic Distance		Voise			
	Frea	uencv	Bins Per	Rolloff	Tolerance		
Channel 1	Start	Stop	Octave	dB/Octave	Upper	Lower	
Group 1	57 Hz,	718 Hz	6	36	1.0 dB	1.0 dB	1
Group 2	806 Hz	2874 Hz	1	26	15 AP	1 5 AP	
		The second s	0	30	1.5 00	1.5 40	
Group 3	3225 Hz	9123 Hz	6	36	2.5 dB	2.5 dB	
Group 3 Group 4	3225 Hz	9123 Hz	0 6	36	2.5 dB	2.5 dB	
Group 3 Group 4 Group 5	3225 Hz	9123 Hz	6	36	2.5 dB	2.5 dB	
Group 3 Group 4 Group 5 Group 6	3225 Hz	9123 Hz	6 6	36	2.5 dB	2.5 dB	
Group 3 Group 4 Group 5 Group 6 Group 7	3225 Hz	9123 Hz	6 6	36	2.5 dB	2.5 dB	
Group 3 Group 4 Group 5 Group 6 Group 7 Group 8	3225 Hz	9123 Hz	6	36	2.5 dB	2.5 dB	-
Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Iote: Group ranges listed p Other:	3225 Hz	9123 Hz	0 6 effective ranges o	30 36	2.5 dB	2.5 dB	
Group 3 Group 4 Group 5 Group 6 Group 7 Group 8 Iote: Group ranges listed p Other:	3225 Hz.	9123 Hz	0 6 effective ranges o	36 36 fgroup(s).	2.5 dB	2.5 dB	
Group 3 Group 4 Group 5 Group 5 Group 7 Group 8 Jote: Group ranzes listed p Other:	3225 Hz,	9123 Hz	6 effective ranges o Proc. H	30 36 fgroup(s).	2.5 dB		
Group 3 Group 4 Group 5 Group 5 Group 7 Group 8 Note: Group ranzes listed p Other: ignatures Marketing: Mfg Engr.:	3225 Hz	9123 Hz	o 6 effective ranges o Proc. E Dev. Et	30 36 fgroup(s).	2.5 dB	Date:	
Group 3 Group 4 Group 5 Group 5 Group 7 Group 7 Group 8 Note: Group ranges listed p Other: Other: Marketing: Marketing: DA Lab:	3225 Hz	9123 Hz 9123 Hz	o 6 effective ranges o Proc. H Dev. Bi	30 36 fgroup(s).	2.5 dB	Date:	
Group 3 Group 4 Group 5 Group 5 Group 7 Group 8 lote: Group ranges listed p Other: anatures Aarketing: Afg Engr.: 24 Lab: evision History	3225 Hz	9123 Hz 9123 Hz Pate Date Date Date Date Date Date Date	o 6 effective ranges o Proc. H Dev. H	30 36 (group(s).	2.5 dB	Date:	
Group 3 Group 4 Group 5 Group 7 Group 8 Vote: Group ranges listed p Other: ignatures Marketing: Afg Engr.: 2A Lab: evision History Rev Release.	3225 Hz er OF1004, rev B. F	9123 Hz 9123 Hz	o 6 effective ranges o Proc. E Dev. E	30 36 (group(s).	2.5 dB	L.5 dB L.5 dB Date: Date: Date:	

JBL

urt # <u>361072-</u> 0	Part # <u>361072-</u> Voofer / Midrange	01	
7s 48	Fs 48	_ +/_	10%
CR 8.4	ce: DCR <u>8.4</u>	+/-	5%
0.51	driver Resistance: Qts0.51	_	
ms28.6	Mms 28.6	+/-	5%
31 11.6	Bl 11.6	+/-	5%
PL 86	- see curve SPL 86	+/-	1.0 dP
Y) sla]: 0.648	ngineering Reference ONLY) Windings [Maxwell turns]: <u>170,269</u> ersion to Flux Density [Tesla]: <u>0.648</u>		
Y) sla]: <u>0.643</u>	agineering Reference ONLY) Windings [Maxwell turns]: <u>170,269</u> ersion to Flux Density [Tesla]: <u>0.648</u> [Maxwell turns]: lux Density [Tesla]:		
Y) : <u>170,269</u> sla]: <u>0.648</u>	ngineering Reference ONLY) Windings [Maxwell turns]: <u>170,269</u> ersion to Flux Density [Tesla]: <u>0.648</u> [Maxwell turns]: hux Density [Tesla]:		
Y) : <u>170,269</u> sla]: <u>0.643</u> 	agineering Reference ONLY) Windings [Maxwell turns]: 170,269 ersion to Flux Density [Tesla]: 0.648 [Maxwell turns]:		
Y) : <u>170,269</u> sla]: <u>0.648</u> 	ersion to Flux Density [Tesla]: 0.648 [Maxwell turns]: 0.648 [Maxwell turns]:		
Y) ; sla]:	agineering Reference ONLY) Windings [Maxwell turns]: ersion to Flux Density [Tesla]: [Maxwell turns]: lux Density [Tesla]:	<u>170,269</u> 0.648	<u>170,269</u> 0.648

Frequency Response, 2.83Vrms @ 1Meter

Eng EPR STND, GGEC # 00622, unit # 4

2nd and 3rd Harmonic distortion raised 20dB relative to Fundamental Measured at 8.0 vrms at 1M

Eng EPR STND, GGEC # 00622, unit # 4

3BL	. (papu	arameters
Group	recomme	ILSSA: P
imits imits 3.82 sq	-50% is	-
arman C QC L Sd): 21: e)·GL031	20% to -	DARD
8 for H Area (0.5% (-)	STAND
9479-348 is is is is is is is is is is is is is	Fs = -3	EPR
a grams 110227-5 Unit Unit Unit Unit Unit Unit Unit Unit	ift in	14-05
441 #8 0 441 #8 0.60 0.60 0.60 1.51 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53	ful. Sh	8" 6-
SSA SPO Measure free d) d) free d) free d) free d) free d) free d) free d) free d) free d) free d) free d) free d free d free d free d free d free d free d free d free free	success	thesis,
M RMSE- RMSE	alysis	622 Syn
Line Line Metho DCR m	An	#4- 00

MLSSA Parameter sheet example:

Eng EPR STND, GGEC # 00622, unit # 4

LMS impedance curve

Eng EPR STND, GGEC # 00622, unit # 4

Synthesis 6 - Approved Transducer Assembly (for reference only) Drawing shown here is not maintained. Receive current revision from HCG Engineering.