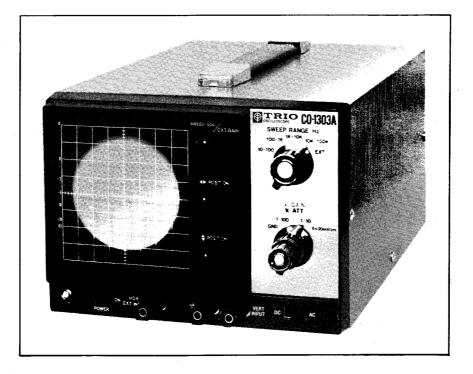

75 mm OSCILLOSCOPE CO-1303A

INSTRUCTION MANUAL

CO-1303A

CONTENTS

	Page	1
1.	Features	
2.	Specifications	
3.	Circuit Description	ŀ
4.	Operating Instructions 6	
5.	Applications	
6.	Caution on Handling the Scope 19	1
7.	Adjustment	
8.	Maintenance	
9.	Block Diagram, Schematic Diagram & Drawing of External View	


1. FEATURES

The TRIO CO-1303A Oscilloscope is a highly sensitive and stable oscilloscope employing a 75 mm cathode ray tube. Its unique design enables easy operation.

Make the most of the oscilloscope by carefully reading this instruction manual.

Features

- A vertical-axis sensitivity of better than 20 mV/cm and a frequency response from DC to 1.5 MHz.
- DC amplifiers are used for both vertical and horizontal axis.
- All transistorized circuitry provides low power consumption and low heat generation.
- Compact and lightweight, easily portable.
- Graticule made of smoked acrylic resin for easy observation of waveform.
- Direct deflection terminals for the vertical axis are provided to permit measurements at high frequencies.

2. SPECIFICATIONS

VERTICAL AMPLIFIER 20 mV/cm or better Deflection sensitivity : 20 mV/cm or better Frequency response DC : DC to 1.5 MHz (-3dB) AC : 2 Hz to 1.5 MHz (-3dB) Input impedance : 1 MΩ shunted by 30 pF max Overshoot : 5% or less Attenuator : 1, 1/10, 1/100 multiplier within ±5%	
Deflection sensitivity:20 mV/cm or betterFrequency responseDC:DC to 1.5 MHz (-3dB)AC:2 Hz to 1.5 MHz (-3dB)Input impedance:1 MΩ shunted by 30 pF maxOvershoot:5% or lessAttenuator:1, 1/10, 1/100 multiplier within ±5%	
Frequency responseDC:DC to 1.5 MHz (-3dB)AC:2 Hz to 1.5 MHz (-3dB)Input impedance:1 MΩ shunted by 30 pF maxOvershoot:5% or lessAttenuator:1, 1/10, 1/100 multiplier within ±5%	
AC:2 Hz to 1.5 MHz (3dB)Input impedance:1 MΩ shunted by 30 pF maxOvershoot:5% or lessAttenuator:1, 1/10, 1/100 multiplier within ±5%	
Input impedance:1 MΩ shunted by 30 pF maxOvershoot:5% or lessAttenuator:1, 1/10, 1/100 multiplier within ±5%	
Overshoot:5% or lessAttenuator:1, 1/10, 1/100 multiplier within ±5%	
Attenuator : 1, 1/10, 1/100 multiplier within ±5%	
Gain control range : Continuously variable range greater than 22 dB.	
Rated maximum input voltage : 300 V (DC + AC peak) or 600 Vp-p	
Temp. stability : 1 mm/°C or less (at 20 mV/cm)	
Drift : 15 mm/hr or less (after 15 minutes warm-up)	
HORIZONTAL AMPLIFIER	
Deflection sensitivity : 500 mV/cm or better	
Frequency response : DC to 250 kHz with EXT. GAIN Control set at maxim	ım.
DC to approx. 25 kHz with EXT. GAIN Control se	
mid-range.	
Input impedance : $1 M\Omega$ (±20%) shunted by 40 pF max.	
Attenuator (EXT. GAIN) : Continuously variable to zero	
Rated maximum input voltage : 100 Vp-p	
SWEEP CHARACTERISTICS	
Sweep frequency : 10 Hz to 100 kHz continuously variable in 4 ranges. Sweep linearity : Within 5%	
Synchronizing : Internal negative only	. ا م م
Signal amplitude requirement : Greater than 10 mm deflection on cathode ray t	JDe
for synchronization screen.	
INTENSITY MODULATION	
Required signal : 25 Vp-p	

DIRECT DEFLECTION TERMINALS

25 V/cm or better Deflection sensitivity : 2.2 M Ω shunted by 25 pF or less Input impedance : AC 220 ~ 240 V (230 V) POWER REQUIREMENT : 50/60 Hz, 15 W max. Width: 7-1/2" (190 mm) DIMENSIONS : (154 mm) Height: 6'' Depth: 12" (307 mm) Overall dimensions include all protrusions

:

WEIGHT

Approx. 8.36 lbs. (3.8 kg)

3. CIRCUIT DESCRIPTION

Refer to BLOCK DIAGRAM and SCHEMATIC DIAGRAM

Vertical Circuit

The input signal connected to VERT INPUT terminal is applied to an attenuator through the AC-DC switch.

The attenuator provides three steps (1, 1/10, 1/100).

The vertical amplifier is a highly stable direct coupled differential amplifier employing an FET (Q1) and silicon transistors Q2 to Q5, amplifies and provides a gain of approx. 62 dB.

Horizontal Circuit

The horizontal circuit consists of a saw-tooth generator for a time base and a horizontal amplifier circuit. The saw-tooth generator comprising transistors $\Omega 6$ and $\Omega 7$ employs a unique circuit with facilities for stabilizing the DC level.

The horizontal amplifier, is a direct coupled highly stable differential amplifier employing an FET (Q8) and silicon transistors Q9 and Q10. The frequency response is from DC to greater than 250 kHz. It allows operation at slow sweep speeds below 1 Hz through the use of the HOR EXT. INPUT terminals. The horizontal amplifier provides a gain of approx. 35 dB, which may be varied by approx. 10 dB using the H. GAIN control.

Power Supply Circuit

The power supply circuit provides voltages +8 V and -15 V, stabilized by zener diodes D7 and D8, +165 V for the collectors of the final amplifier stage and -1200 V for the cathode ray tube circuit.

4. OPERATING INSTRUCTIONS

The markings of controls and terminals on the front panel are given in the following table. When reading the table, refer to the attached EXTERNAL VIEW.

(FRONT PANEL)

REF. NO.	PANEL MARKING	DESCRIPTION
(1)	(NEON PILOT)	Illuminated when the scope is in the operating condi- tion.
(2)	POWER	Power on-off switch. When this switch is placed in ON position, the scope is brought to its operating condition.
(3)	HOR EXT. INPUT	Input terminal for an external horizontal signal. Use grounding terminal (4) as the common grounding terminal.
(4)	Ļ	Grounding terminal.
(5)	VERT INPUT	Input terminal for the vertical signal. Note that terminals (4) and (5) are spaced for inserting a dual banana plug.
(6)	AC – DC	Selector switch for the vertical input coupling capac- itor. In the DC position, the switch directly couples the VERT INPUT terminal (5) and V. ATT (7) and, therefore, allows the vertical amplifier to amplify input signals ranging from DC. In the AC position, a capacitor is placed between the vertical attenuator V. ATT (7) and VERT INPUT (5) and, therefore, the DC com- ponent of input signal is blocked thereby allowing observation of only the AC component.

REF. NO.	PANEL MARKING	DESCRIPTION	
(7)	V. ATT	Vertical attenuator. The vertical attenuat facilities to attenuate the signal voltage conversion VERT INPUT terminal (5) to a suitable being applied to the vertical amplifier. When this attenuator is set to position applied to the VERT INPUT terminal (4) coupled to the vertical amplifier. In positi 1/100, the attenuator attenuates the signation input is reduced to 1/10 and 1/100 of the respectively. In GND position, the attenuator grounds the vertical amplifier and opens the V terminal (5). The attenuator position GNI for making DC BAL adjustments.	nected to the level before 1, the signal 5) is directly ons 1/10 and al so that the normal value, the input of ERT INPUT
		Signal voltage to be measured	V. ATT
		1.2 Vp-p (0.4 Vrms) or less 0.2 to 12 Vp-p (0.07 to 4 Vrms) Above 2 Vp-p (1 Vrms)	1 1/10 1/100
(8)	V. GAIN	Vertical gain control. This control, oper bination with vertical attenuator V. ATT facilities to provide an appropriate ampl cathode ray tube screen. If it is impossible waveform to an appropriate amplitude by o control, turn the vertical attenuator V. another position.	(7), provides itude on the to adjust the operating this
(9)	POSITION	Vertical poisition control. The control p ities to move the signal waveform up and d cathode ray tube screen. Clockwise rot control moves the waveform up over the scr	own over the ation of the
(10)	◆ POSITION	Horizontal position control. The control p ities to move the signal waveform to the over the cathode ray tube screen. Clockwis the control moves the waveform to the righ	left or right se rotation of

REF. NO.	PANEL MARKING	DESCRIPTION
(11)	SWEEP RANGE	Sweep-frequency selector switch, together with SWEEP VARI/EXT. GAIN (12), provides variable sweep frequencies allowing the appropriate number of cycles of signal waveform on the cathode ray tube screen for easy observation. Position markings $10 - 100$, $100 - 1$ K and so on represent sweep frequencies. In position EXT, this switch connects the horizontal amplifier via the SWEEP VARI/EXT. GAIN control (12) to the HOR EXT. INPUT terminal (3).
(12)	SWEEP VARI/EXT. GAIN	Sweep frequency fine adjustment and external signal gain control. When the SWEEP RANGE selector switch (11) is in the internal frequency range (10 - 100 K), this control acts as the fine adjustment of sweep frequency to the number of the cycles in the signal waveform on the cathode ray tube screen. When the SWEEP RANGE selector switch (11) is in the EXT position, this control provides facilities to adjust the gain of the signal connected to the HOR EXT. INPUT terminal (3) to change the amplitude of the horizontal signal on the cathode ray tube screen. Note that the horizontal frequency response varies with the position of this control. (Refer to Specifications)
(13)	GRATICULE	The graticule is made of acrylic resin and has engraved markings to aid in analyzing the waveform on the cathode ray tube screen. There are dB scales on the graticule as $0, -3, -6, -10$ and -20dB so calibrated that it provides a level corresponding to an amplitude of 4 cm above the REF line. Thus, these graduations may be conveniently used for measuring signal levels in frequency response measure- ments.

(BOTTOM PANEL)

REF. NO.	PANEL MARKING	DESCRIPTION
(14)	D.C. BAL	DC balance adjustment for the vertical amplifier. This adjustment should be so adjusted that the trace line remains stationary as the V. GAIN control (8) is rotated from full clockwise to full counterclockwise.

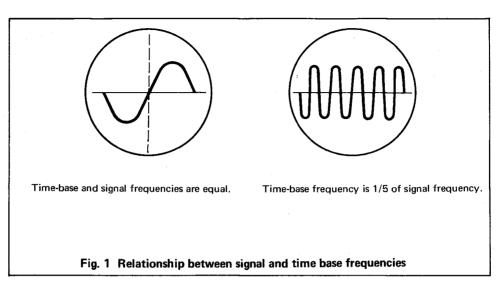
(REAR PANEL)

REF. NO.	PANEL MARKING	DESCRIPTION
(16)	INTENSITY	The intensity adjustment provides a means to adjust the brightness of the waveform appearing on the cathode ray tube screen. Clockwise rotation of this control increases the wave- form brightness.
(17)	FOCUS	The focus adjustment provides the means to adjust the waveform appearing on the cathode ray tube for maximum clarity.
(18)	INT MOD	Terminal for intensity modulation. This terminal requires an AC voltage of approx. 25 Vp-p to blank the screen. When a positive signal is applied to this terminal, the waveform intensity is increased. If a negative signal is applied, the intensity is reduced. This terminal is not effective when at DC.
(19)	GND	Grounding terminal.
(20)	V. DIR	Direct deflection terminals. They can be directly connected to the CRT vertical deflection plates by switching the DIR-NOR selector switch (21) to observe waveforms of high frequencies.

REF. NO.	PANEL MARKING	DESCRIPTION
(21)	DIR-NOR	Switch for the vertical deflection plates. In the NOR position, it connects the CRT to the amplifier for measurements through input terminals (4) and (5). In the DIR position, the internal amplifier is put out, enabling measurements to be made through input terminals (19) and (20), where signals under measurement are directly passed to the CRT deflection plates.
(22)	POWER CORD	

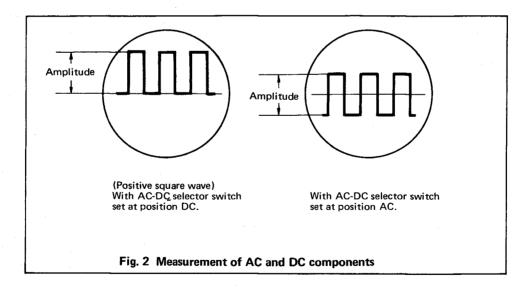
GENERAL OPERATION

Apply the signal voltage to be observed to the $\frac{1}{2}$ (4) and VERT INPUT terminal (5) using the cable supplied with the unit. Connect the black cable to the grounding terminal $\frac{1}{2}$ (4) and the red cable to the VERT INPUT terminal (5). Adjust the attenuator V. ATT (7) and V. GAIN control (8) until the waveform appearing on the cathode ray tube screen provides an amplitude of approx. 4 cm.

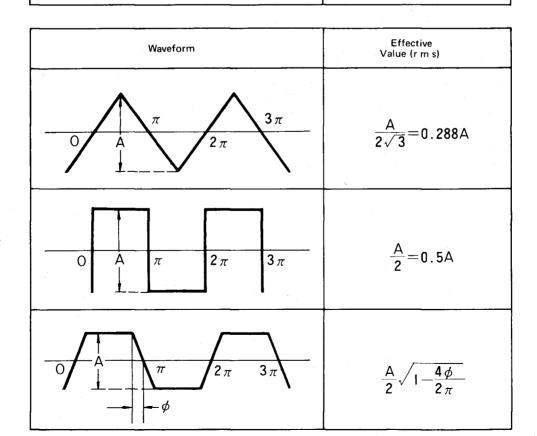

Then, set the SWEEP RANGE selector switch (11) to the range including the frequency fo the signal voltage to be observed or the next counterclockwise range.

Turn the SWEEP VARI/EXT. GAIN control (12) until the screen displays a waveform with the number of cycles adequate for observation (generally three cycles).

If the waveform includes only one wave, it means that the sweep frequency of time base is the frequency of the signal under observation. If the waveform includes five cycles it means that the sweep frequency of time base is 1/5 of the signal frequency.


Turn the AC-DC selector switch (6) to the DC position when it is desired to measure the DC component of the signal under observation, or to observe a frequency below 10 Hz.

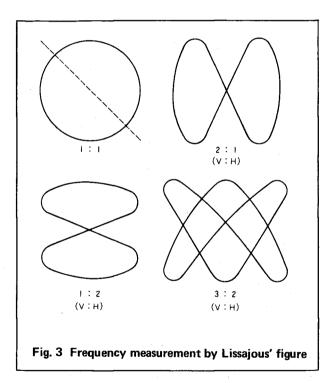
When it is desired to observe the AC component only, turn the above selector switch to the AC position. It should be noted that a positive (+) signal on the vertical amplifier causes the trace to move up. A positive signal amplied to the horizontal input causes a deflection to the left.


Position the waveform by adjusting the vertical position control (9) and horizontal position control (10) appropriately.

If the waveform includes a DC component, it is shifted up or down depending on the polarity of the component. In this case, correct the position of the waveform by means of the vertical position control (9). If the waveform cannot be brought within the screen of the cathode ray tube, it means a large DC component is included in the signal under observation. In such a case, turn the V. ATT (7) or V. GAIN control (8) counterclockwise until the waveform is brought back to an appropriate position.

Any voltage measurements made on an oscilloscope are made in p-p or peak values. Because the effective, or rms value is often the one of interest, the following table gives the conversion between p-p and rms values for a number of common waveforms.

Effective Value (r m s) Waveform 3π $\frac{A}{2\sqrt{2}}=0.354A$ 0 2π $\frac{A}{2} = 0.5A$ 0 2π 3π π $\frac{A}{\sqrt{2}} = 0.707A$ 3π 0 2π π

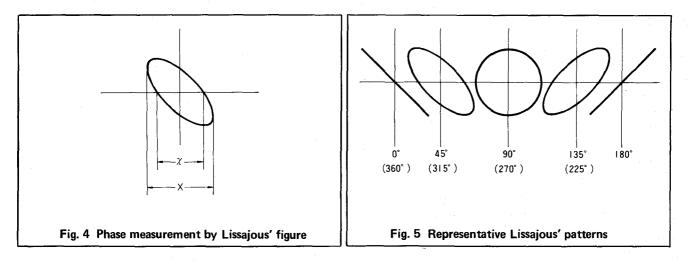

MEASUREMENT BY LISSAJOUS' FIGURES

(a) Frequency measurement

Lissajous' figures are a widely used method for measurement of the frequency of a signal. To make a frequency measurement using this method, proceed as follows:

Set the SWEEP RANGE selector switch (11) to the EXT position. Connect a signal generator across the HOR EXT. INPUT terminals (3) and $\stackrel{!}{=}$ (4) and adjust the generator output until the waveform appearing on the cathode ray tube screen provides a trace width of approx. 4 cm. Apply the unknown frequency signal across the $\stackrel{!}{=}$ (4) and VERT INPUT (5) terminals and adjust the V. GAIN control (8) until the waveform appearing on the cathode ray tube screen has an amplitude of approx. 4 cm.

Slowly vary the output frequency of the generator until the waveform appears as one of the following figures.

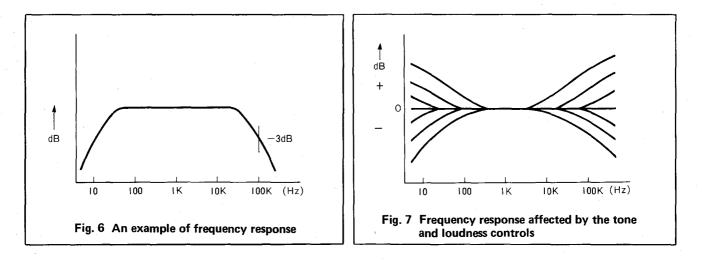

The frequency of signal oscillator and the unknown frequency are equal when the waveform becomes a straight line, an ellipse or circle. The figure comes to a standstill only when there is such relation between the frequency of the signal generator and the unknown frequency that the former is an exact multiple of the latter or vice versa. This makes it possible to find the unknown frequency through a calculation.

The frequency ratio is determined by observing the number of tangent points on either vertical side and on either top or bottom. The frequency ratio is the ratio between these tangents. Several examples are given in the illustration.

(b) Measurement of phase difference

Apply the two signals having the same frequency (for instance the R and L signals of a stereo signal) to HOR EXT. INPUT (3) and VERT INPUT terminals (5) in the same manner as described in (a). A straight line running from the upper left corner to the lower right corner of the screen indicates both signals are in phase with each other. Increasing phase difference causes the straight line on the cathode ray tube screen to gradually turn into an ellipse. When the ellipse turns into a circle or an ellipse with a vertical or horizontal axis the signals are 90° out of phase with each other.

To make the measurement of the phase difference of the two signals mentioned above, measure the horizontal deflection of the overall figure and the length of figure on the horizontal axis, which are given as X and x respectively in following figure. And the phase difference θ is given by Sin $\theta = x/X$.

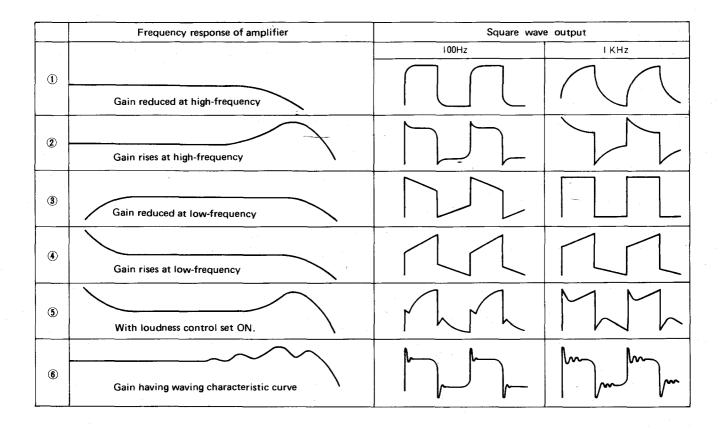


Note that if the EXT. GAIN control (12) is kept in the fully clockwise position in the above measurement, the vertical and horizontal signal phase difference of the oscilloscope is essencially zero up to about 2 kHz. Above 2 kHz, however, the unit will have a vertical and horizontal signal phase difference. Take the above fact into consideration when making phase difference measurements.

Also, it should be noted that if EXT. GAIN control (12) is not fully clockwise, the range of frequencies at which the vertical and horizontal signal phase difference is zero is reduced and will be approx. 500 Hz when the control is set at its mid-point.

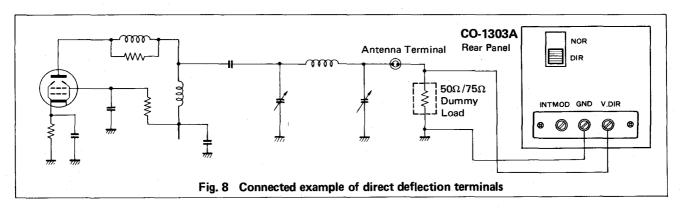
5. APPLICATIONS

(a) Frequency Response Measurement of an Audio Amplifier Connect the sine wave output of a signal generator to the input terminal of the audio amplifier under measurement. Connect the VERT INPUT (5) and 4 (4) terminals of the oscilloscope across the speaker output terminals of the amplifier. The amplifier should be feeding a load resistor of the proper value.


With the output voltage of the signal generator set at a constant value, change the output frequency of the generator and read the amplitude of the waveform in dB on the cathode ray tube screen using the dB scale for various major frequencies. Plot the amplitude readings thus obtained against the frequencies and you can obtain a general amplitude frequency characteristic as shown in the Fig. 6.

If the tone and/or loudness controls on the amplifier are adjusted appropriately, then the characteristic curve will be changed as shown in the Fig. 7.

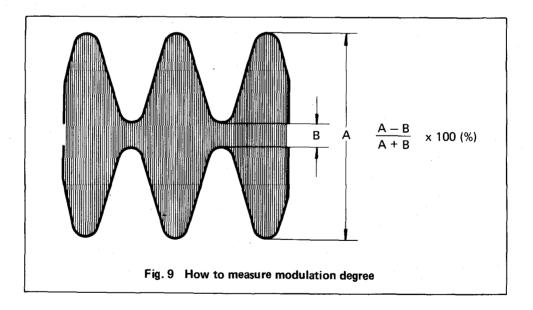
Note that the dB scale of this unit provides means to directly read the amplitude of a waveform on the cathode ray tube screen in dB, such as -3 and -6 dB.


(b) Measurement with Square Wave Signal

If a square wave signal is used in lieu of the sine wave signal in the above frequency characteristic measurement, the frequency characteristics of the audio amplifier can be roughly estimated from the various output waveforms of the square wave signal in accordance with the diagram shown in the page next.

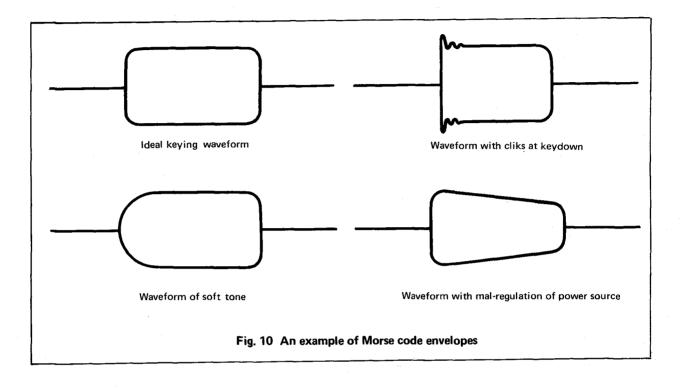
(c) Measurements through the Direct Deflection Terminals

Although frequencies below 1.5 MHz can be measured through the internal amplifier, higher frequencies must be measured through the direct deflection terminals. For direct connection, set DIR – NOR switch (21) to DIR, and connect the signal to be measured, to DIR (20) and GND (19).

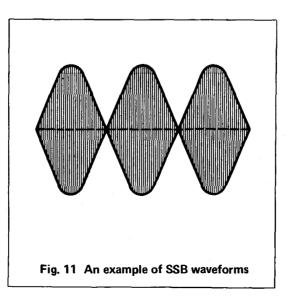

Remark: The dummy load should be of a non-inductive type as this may affect high frequency characteristics of the unit.

The direct deflection terminals, however, require an input level of 25 Vp-p to 100 Vp-p because of their low sensitivity. Also, since the direct connection to the deflection plate puts the sensitivity control out of the circuit, adjustment must be made on the source side of the set-up.

The followings are examples of observation of the output signals of communications instruments:


1) Modulation measurement

Make connections as shown in the Fig. 8. After obtaining a waveform on the CRT, measure maximum amplitude A and minimum amplitude B as shown in the Fig. 9. The degree of modulation can be found from the equation in the Fig. 9.


2) Measurement of Morse code envelopes

Employ the same connections as for the modulation measurement. Connect a high-speed keyer – an electronic keyer is preferable – to the key jack of the transmitter, and repeat dashes or dots to observe their waveform while adjusting SWEEP VARI (12).

3) Observation of SSB waveforms

Make connections referring to the Fig. 8. Connect the output of a two-tone generator (for example, 500 Hz and 1500 Hz) to the microphone input jack of the SSB transmitter to observe modulation. Waveforms as shown in the Fig. 11 are satisfactory; however, if peaks or nodes are dull or flat, the signal may be spluttering. Note, however, that such distorted waveforms can also appear with an excessively large output from the two-tone generator.

6. CAUTION ON HANDLING THE SCOPE

- (a) Do not operate this oscilloscope in a place where the set is exposed to direct sunlight. Otherwise, the unit may reach a high internal temperature with resultant unstable operation and, in some cases, result in damaged components.
- (b) Do not operate the set in a room where high temperature and high humidity prevail.
- (c) Do not operate the set in a place where mechanical vibrations prevail or near equipment which generate strong magnetic fields or impulse voltages.
- (d) When using another power source change the wiring for voltage conversion on the printed circuit board within the set to an appropriate position depending on the source selected. Replace the existing fuse with 0.5 A fuse for operation from a 117 V power source or a 0.3 A fuse for 230 V power source operation (Refer to MAINTENANCE paragraph).
- (e) Do not allow the voltage across the VERT INPUT (5) and \perp (4) terminals to exceed 600 Vp-p and that across HOR EXT. INPUT (3) and \perp (4) terminals to exceed 100 Vp-p.
- (f) The trace line on the cathode ray tube screen changes its angular direction a little due to the earths magnetic field when the set is placed in various directions.

7. ADJUSTMENT

(a) Adjustment of D.C. BAL

When the trace line is moved up or down as the V. GAIN control (8) is turned, adjust the D.C. BAL adjustment as follows.

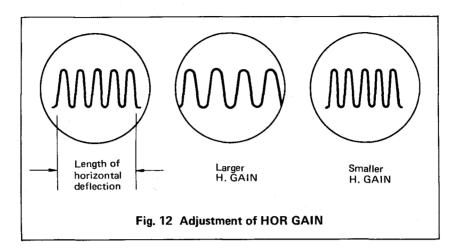
First place the operating controls as follows V. ATT (7) at GND, V. GAIN control (8) at fully counterclockwise position. Adjust \clubsuit POSITION control (9) until the trace line is centered on the cathode ray tube screen.

Then, turn the V. GAIN control (8) clockwise and if the trace line shifts, insert a screwdriver with narrow tip (having a width of less than 2.5 mm) in the hole for D.C. BAL adjustment and fit the tip of the screwdriver in the center groove of trim-pot adjustment D.C.BAL. Slowly turn the trim-pot in such a manner that the shifted trace line is restored to its original position.

Repeat the above step several times until the trace line remains unmoved even though V. GAIN control (8) is turned.

Allow at least 15 minutes of operation for the unit to stabilize before making this adjustment.

(b) Adjustment of V. POS. ADJ


After removing the case, set + POSITION (9) to the mechanical center, and turn trim-pot VR2, on the printed circuit board, until the trace line is aligned to the center of the graticule.

(c) Adjustment of HOR GAIN

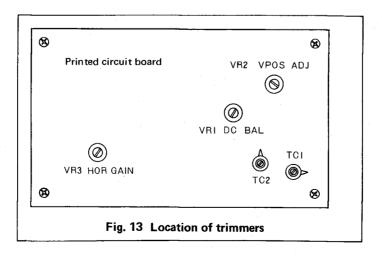
- Apply a signal of 3 Vp-p at approx. 1 kHz to the HOR EXT. INPUT terminals (3) and ±
 (4). With SWEEP RANGE selector switch (11) set at the EXT position, turn the SWEEP VARI/EXT. GAIN control (12) to the fully clockwise position. Turn trim-pot VR3 on the printed circuit board. Slowly turn the trim-pot until the trace line provides a horizontal deflection of 6 cm and the set is calibrated for a horizontal sensitivity of 500 mV/cm.
- 2) Set up the oscilloscope for internal sweep by placing the SWEEP RANGE selector switch (11) in a position other than EXT.

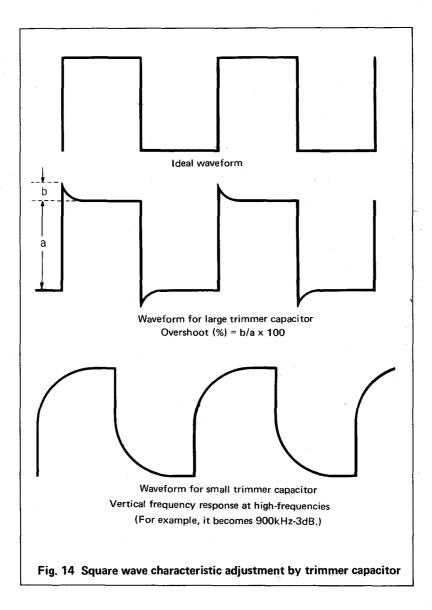
Apply an input signal to the $\frac{1}{4}$ (4) and VERT INPUT (5) terminals and adjust the V. GAIN control (8) until the waveform appearing on the cathode ray tube screen provides an amplitude of approx. 4 cm.

Adjust SWEEP RANGE selector switch (11) and SWEEP VARI/EXT. GAIN control (12) until a normal waveform appears on the cathode ray tube screen. Adjust VR3 so as to set the horizontal deflection of the waveform to an appropriate length of deflection (for instance 6 cm).

- (d) Adjustment of V. ATT Frequency Correction Remove the cabinet case from the unit.
- **CAUTION:** The cathode ray tube socket pins carry voltage of approx. -1200 V. BE CAREFUL not to bring the hand or screwdriver into contact with the metal section of the socket while making these adjustments.

Apply a square wave signal of approx. 1 kHz to \perp (4) and (5) terminals.

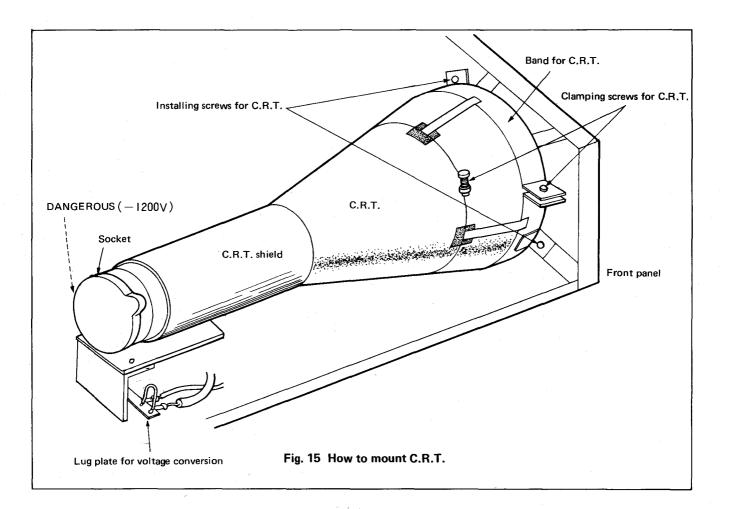

With vertical attenuator V. ATT (7) set to position 1, adjust the output of the signal generator until the waveform appearing on the cathode ray tube screen provides an amplitude of approx. 4 cm.


Turn SWEEP RANGE selector switch (11) to the 100–1K position and adjust the SWEEP VARI/EXT. GAIN control (12) so as to make the waveform include two to four cycles.

Check that the waveform under the above condition is a good square wave and then turn the vertical attenuator V. ATT (7) to position 1/10. Then, increase the output of signal generator 20 dB to make an amplitude of 4 cm.

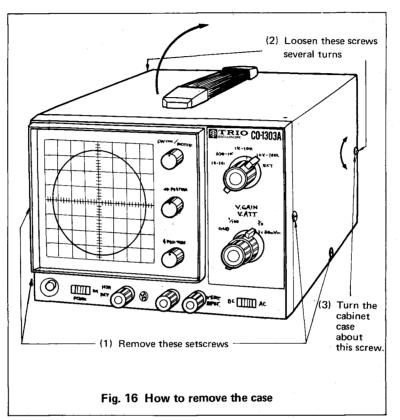
If necessary, adjust trimmer capacitor TC1 using an insulated (adjustment) screwdriver until the square wave is restored to its original configuration.

Repeat the previous steps with the vertical attenuator set to position 1/100 and adjusting trimmer capacitor TC2.



- (e) Correction of Cathode Ray Tube Position for Tilt
 - 1) Remove the cabinet case.

CAUTION: The cathode ray tube socket pins carry voltage of approx. –1200 V. BE CAREFUL not to bring the hand or screwdriver into contact with the metal section of the socket while making these adjustments.


- 2) Loosen the two clamping screws for the cathode ray tube.
- 3) Place the unit in the direction it is generally used.
- 4) Hold the cathode ray tube with your hand directly behind the clamping screws and turn the tube until the trace line on the cathode ray tube screen is properly aligned to horizontal graticule lines. In making the above correction, position the surface of the cathode ray tube so that it is just brought in contact with the graticule.

5) Tighten the clamping screws for the cathode ray tube uniformly while checking that the trace line is kept level on the center horizontal axis of the scale.

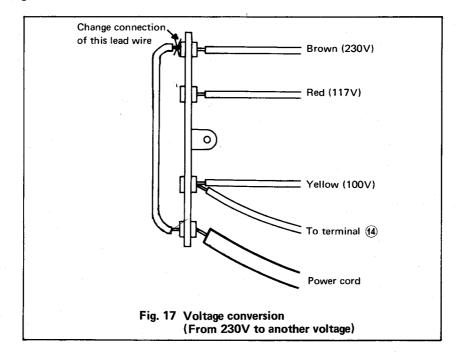
8. MAINTENANCE

(a) Removal of Cabinet Case

- 1) Remove four setscrews for the cabinet case from both side plates.
- 2) Loosen the screws located at the center rear sections of both side plates several turns.
- 3) Hold the handle of the cabinet case in your hand and lift the case up backward while rocking the case about the screws at the center rear sections of both side plates.

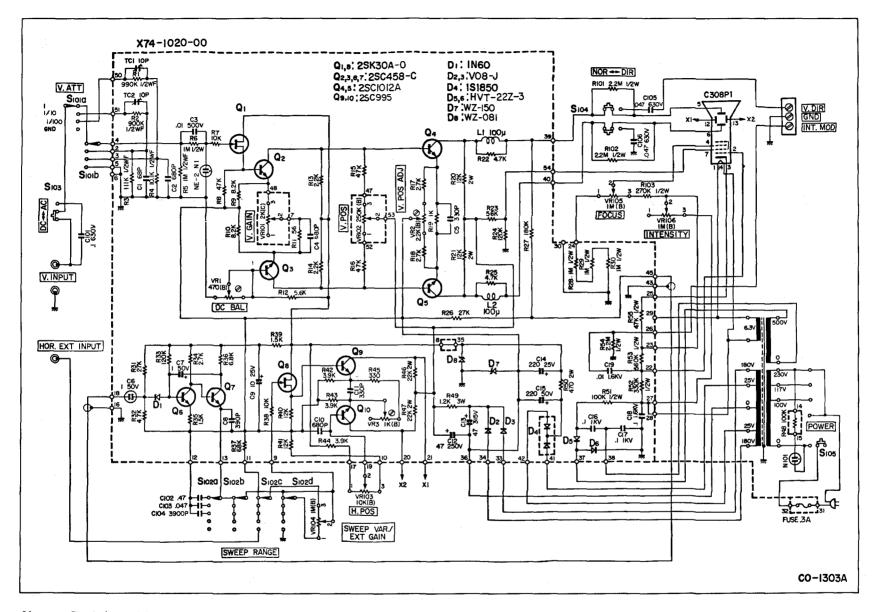
(b) Removal of Cathode Ray Tube

- 1) Remove the cabinet case from the unit.
- 2) Remove the socket from the cathode ray tube.
- 3) Remove the two mounting screws for the cathode ray tube shield.
- 4) Unthread two screws from the CRT band.
- 5) Carefully draw out the cathode ray tube together with its shield.
- **CAUTION:** Handle the cathode ray tube with utmost care. When replacing the tube, BE CAREFUL to place the tube in the socket with the key positioned in the upper left direction when viewed from the face.

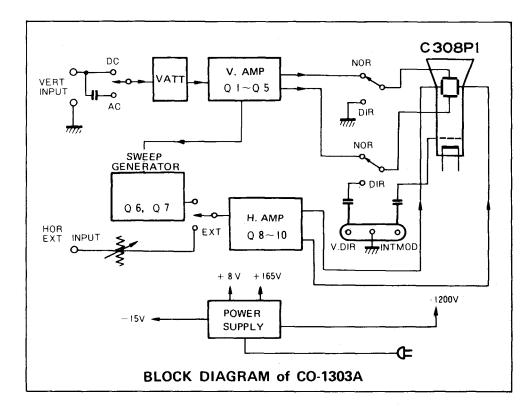

(c) Removal of Panel

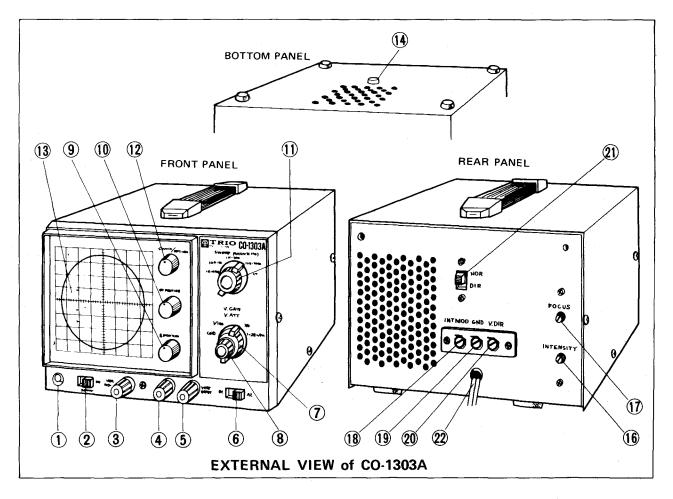
- 1) Remove the cabinet case.
- 2) Loosen mounting screws for control knobs (2 large knobs, 3 small knobs and 1 red knob).
- 3) Unscrew the nut from the SWEEP RANGE selector switch shaft.
- 4) Remove the black screw between terminals (3) and \perp (4).
- 5) Remove two screws from the lower section of the front panel.
- 6) Carefully draw the panel forward.

CAUTION: Handle the panel carefully. Rough handling may bend or crack panel.


(d) Voltage Conversion

- 1) To convert the power source voltage, first remove the power cord from the power source.
- 2) There is a lug plate, as shown in the Fig. 15, beside the CRT shield base. The terminal to which the power cord is connected has another lead extending to the junction of a brown (230 V) wire or of a red (117 V) wire. Disconnect this brown or red wire at the terminal.
- 3) Replace this wire to the individual points of connection, and solder, in conformity with the line voltage to which the set is to be switched (100 V, 117 V or 230 V).


(e) Replacement of Fuse


- 1) Always disconnect power supply before replacing a fuse.
- 2) Remove the cabinet case from the unit.
- 3) Remove the fuse inserted in its holder located on the upper right corner of printed circuit board and insert a new fuse in the fuse holder.
- 4) If the fuse taken out is blown out, trouble shoot the set for brown fuse, repair the trouble and then apply the power to the set.
- 5) For 117 V oreration a 0.3 A fuse should be used and for 230 V operation a 0.5 A fuse should be used.

Note: Resistor with no specified value are those of 1/4 W and ±5%. Also, the circuit elements may be changed without notice owing to a technical innovation.

The source voltage is set for 230 V AC and the fuse is 0.3 A in this schematic diagram.

