

©PRINTED IN JAPAN B50-7683-00(T) 90/12 11 10 9 8 7 6 5 4 3 2 1 89/12 11 10 9 8 7 6 5 4 3 2

Symbol in This Manual

This symbol indicates where applicable cautionary or other imformation is to be found.

SAFETY

Power Source

This equipment operates from a power source that does not apply more than 250 V rms between the supply conductors or between either supply conductor and ground. A protective ground connection by way of the grounding conductor in the power cord is essential for safe operation.

Grounding the Product

This equipment is grounded through the grounding conductor of the power cord. To avoid electrical shock, plug the power cord into a properly wired receptacle before connecting to the equipment input or output terminals.

Use the Proper Power Cord

Use only the power cord and connector specified for your product.

Use the Proper Fuse

To avoid fire hazard, use a fuse of the correct type.

Do not Operate in Explosive Atmospheres

To avoid explosion, do not operate this product in an explosive atmosphere.

Do not Remove Cover or Panel

To avoid personal injury, do not remove the cover or panel. Refer servicing to qualified personnel.

Voltage Conversion

If the power source is not applied to your product, contact your dealer. To avoid electrical shock, do not perform the voltage conversion.

CONTENTS MALVINO

SAFETY	2
VUERVIEW AND CONFIGURATION	
	5
A PREPARATION FOR USE	7
CONTROLS AND INDICATORS	9
FRONT PANEL	9
REAR PANEL	14
BOTTOM PANEL	15
OPERATION	16
INSTAL STARTING PROCEDURE	16
[1] NORMAL SWEEP DISPLAY OPERATION	16
[2] MAGNIFIED SWEEP OPERATION	19
[3] X-Y OPERATION	19
[4] VIDEO SIGNAL OBSERVATION	19
APPLICATION	20
PROBE COMPENSATION	20
TRACE ROTATION COMPENSATION	20
DC VOLTAGE MEASUREMENTS	20
MEASUREMENT OF THE VOLTAGE BETWEEN TWO POINTS ON A WAVEFORM	22
ELIMINATION OF UNDESIRED SIGNAL COMPONENTS	23
TIME MEASUREMENTS	24
FREQUENCY MEASUREMENTS	24
APPLICATION OF X-Y OPERATION	26
MAINTENANCE AND ADJUSTMENT	27
	27
ADJUSTMENT	28

OVERVIEW AND CONFIGURATION

OVERVIEW

This unit is a compact, light-weight, high performance portable oscilloscope equipped with rectangular CRT with internal graticule.

The frequency bandwidth of 20 MHz and selectable sweep time of 0.2 μ s/div to 1 s/div for the vertical axis allows use for a wide range of applications. It is also equipped with such features as magnification functions for the vertical and horizontal axes, single sweep function, and TV sync function. These features make it the ideal oscilloscope for the service bench and various types of maintenance.

CONFIGURATION

4

The following items are contained in the packing case. When unpacking, make sure that all items have been included.

Oscilloscope	1 pc.
Probe (PC-30)	2 pcs.
Panel cover	1 pc.
Instruction manual	1 pc.

In addition, the following are also available as optional accessories (sold separately). Carrying case (soft) MC-81 Carrying case (hard)..... MC-82

SPECIFICATIONS

CRT	
TypeRectangular high luminance CRT (with i	nternal
Acceleration Voltage, 557 Approx, 1.8 kV	
Display Area 8×10 div flat-face (1 div = 6.35 mm)	
VERTICAL AXIS	
Operating ModesCH1, CH2, ALT, CHOP, ADD	
Sensitivity	
Sensitivity Magnification5 times $+/-5\%$ ($\times 5$ MAG used)	
Attenuator1-2-5 step sequence, 10 ranges, adjust	able between
ranges a strait frank for the second strait	
Frequency Response	
5 mV/div to 5 V/divDC: DC to 20 MHz, -3 dB	
AC: 5 Hz to 20 MHz, – 3 dB	
\times 5 MAG usedDC: DC to 4 MHz, -3 dB	
AC: 5 Hz to 4 MHz, -3 dB	
Input Impedance1 Mohm, approx. 40 pF	
Rise Time17.5 ns or less (20 MHz)	
Crosstalk	
Polarity InversionCH2 only	
Chop FrequencyApprox, 50 kHz	
A Maximum Input Voltage800 Vp-p or 400 V (DC+AC peak)	
HORIZONTAL AXIS	
Operating ModesX-Y operation selectable with sweep kr	ob
X axis selectable with TRIG or X	
Y axis selectable with V or Y MODE	
SensitivitySame as vertical axis	
Input ImpedanceSame as vertical axis	
Frequency ResponseDC: DC to 200 kHz, -3 dB	
AC: 5 Hz to 200 kHz, – 3 dB	ustraj avadu -
X-Y Phase Difference	
A Maximum Input VoltageSame as vertical axis	v svjorsivstvo
an intervention of the constraint of the constraint of the second s	
	arty last of

5

SPECIFICATIONS

SWEEP

Sweep T	ГуреNORM: Triggering sweep	
	AUTO: Sweep free runs in absence of trigger	
Sweep T	"ime	2-5 se-
	quence, adjustable between ranges	
Sweep N	Magnification5 times +/-5%	

TRIGGERING

	Internal SyncINT, LINE
	External SyncEXT
	External Sync Input and on the surgeone grade description
٨	Impedance1 Mohm, Approx. 90 pF
⚠	Maximum External Trigger
	Voltage
	Sync CouplingAC, DC, TV-V, TV-H
	Polarity
	Trigger Sensitivity

•••	Counling	Fraguanay	Amplitud	e (Voltage)
	Coupling	and the second states	INT	EXT
	DC	DC ~ 2 MHz ~ 20 MHz	0.5 div 1 div	0.1 Vp-p 0.2 Vp-p
	JOAC G	10 Hz ~ 2 MHz ~ 20 MHz	0.5 div 1 div	0.1 Vp-p 0.2 Vp-p
		TV-H, V	2 div	0.4 Vp-p

CALIBRATION VOLTAGESquare wave (positive polarity) 1 Vp-p ± 3%, 1 kHz ± 3%

POWER REQUIREMENTS

Power Supply VoltageAC100/120/220/240 V ±10% 50/60 Hz Power ConsumptionApprox. 22 W (at 100 V AC)

DIMENSIONS AND WEIGHT

Dimensions......216 (width) \times 89 (height) \times 298 (depth) mm Weight......Approx. 4 kg

OPERATING TEMPERATURE AND HUMIDITY FOR GUARANTEED SPECIFICATIONS 5 to 35°C, 85% maximum RH

ACCESSORIES Probe (PC	C-30)	2	pcs.
Instructio	on Manual	1	pc.
Panel Co	ver	1	pc.

PREPARATION FOR USE

SAFETY

Before connecting the instrument to a power source, carefully read the following information, then verify that the proper power cord is used and the proper line fuse is installed for power source. The specified voltage is shown at the left side of the power cord on the rear panel. If the power cord is not applied for specified voltage, there is always a certain amount of danger from electric shock.

Line voltage

This instrument operates using AC-power input voltages that 100/120/220/240 V at frequencies from 50 Hz to 60 Hz.

Power cord

The ground wire of the 3-wire AC power plug places the chassis and housing of the oscilloscope at earth ground. Do not attempt to defeat the ground wire connection or float the oscilloscope; to do so may pose a great safety hazard.

The appropriate power cord is supplied by an option that is specified when the instrument is ordered.

The optional power cords are shown as follows in Fig. 1.

Line fuse

The fuse holder is located on the rear panel and contains the line fuse. Verify that the proper fuse is installed by replacing the line fuse.

EQUIPMENT PROTECTION

- Never allow a small spot of high brilliance to remain stationary on the screen for more than a few seconds. The screen may become permanently burned. A spot will occur only when the scope is set up for X-Y operation and no signal is applied. Either reduce the intensity so the spot is barely visible, switch back to normal sweep operation when no signal is applied, or set up the scope for spot blanking.
- Never cover the ventilating holes on the top of the oscilloscope, as this will increase the operating temperature inside the case.
- 3. Never apply more than the maximum rating to the oscilloscope inputs.

A CH1, CH2 INPUT jacks:

800 Vp-p or 400 V (DC + AC peak)

EXT TRIG INPUT jack:

50 V (DC+AC peak)

Never apply external voltage to the oscilloscope output terminals.

- 4. Always connect a cable from the earth ground (GND) terminal of the oscilloscope to the chassis of the equipment under test. Without this caution, the entire current for the equipment under test may be drawn through the probe clip leads under certain circumstances. Such conditions could also pose a safety hazard, which the ground cable will prevent.
- 5. Always use the probe ground clips for best results. Do not use an external ground wire in lieu of the probe ground clips, as undesired signals may be introduced.

Operation adjacent to equipment which produces strong AC magnetic fields should be avoided where possible.

This includes such devices as large power supplies, transformers, electric motors, etc., that are often found in an industrial environment. Strong magnetic shields can exceed the practical CRT magnetic shielding limits and result interference and distortion.

- 7. Probe compensation adjustment matches the probe to the input of the scope. For best results, compensation of probe should be adjusted initially, then the same probe always used with the input of scope. Probe compensation should be readjusted whenever a probe from a different scope is used. (See page 20)
- In X-Y operation, do not pull out the PULL × 5 MAG switch. If pulled out it, noise may appeare on the waveform.

Plug configuration	Power cord and plug type	Factory installed instrument fuse	Line cord plug fuse
	North American Antibacture 120 volt/60 Hz Rated 15 amp (12 amp max; NEC)	0.5 A, 250 V Fast blow AGC/3AG	ntidon - Afr None ¹⁹⁷⁶ Sectors - Afr Scholar - Social - A
	Universal Europe 220 volt/50 Hz Rated 16 amp	0.3 A, 250 V Fast blow 5 × 20 mm	None start start
	U.K. 240 volt/50 Hz Rated 13 amp	0.3 A, 250 V Fast blow 5 × 30 mm	0.3 А Туре С
- CF	Australian 240 volt/50 Hz Rated 10 amp	0.3 A, 250 V Fast blow 5 × 30 mm	nonen en
	North American 240 volt/60 Hz Rated 15 amp (12 amp max; NEC)	0.3 A, 250 V Fast blow AGC/3AG	は時間の。 「None」、これのない。 「たい、XaTa (たいない)」の対応。
The second secon	Switzerland 240 volt/50 Hz Rated 10 amp	0.3 A, 250 V Fast blow AGC/3AG 5 × 30 mm	Nones

Fig. 1 Power Input Voltage Configuration

And the tempsonic readily from the soft proved hold() terminal on the long of the the proves of the equilitient under real. Writhout the caption (Leo) the current for the equiption under test may be drewn through the probe of presses under content for elements, gas fourt conditions and equipalise castery hazard. And it in provide orb, we want the well recent.

A however use the points provide units the light results. The best was approximately fillen in the rest global state of the set of the set.

CONTROLS AND INDICATORS

FRONT PANEL

Fig. 2-1

1 POWER

Power switch for the oscilloscope. Pressing this control once turns the power on and pressing it again turns the power off.

2 Pilot Lamp

Lamp lights when the oscilloscope is on.

③ CAL Terminal

Voltage terminal for calibration of probes. Provides an approximately 1 kHz square wave at 1 V with positive polarity.

④ ♦ POSITION/PULL×5 MAG

Rotation adjusts the vertical position of channel 1 trace on the display. Pulling this knob increases the vertical axis sensitivity 5 times.

5 VOLTS/DIV

Sets the vertical axis sensitivity using the vertical attenuator for channel 1. This knob can be switched in a 1-2-5 sequence. Setting the VARIABLE knob (6) to the CAL position provides calibrated vertical axis sensitivity.

During X-Y operation, this control serves as the attenuator for the X axis or Y axis.

sholadigin gha 2108 madu

计通信系统 化分子分子

Fig. 2-2

6 VARI (ABLE)

Rotation provides fine control of channel 1 vertical attenuation. Allows continuous adjustment between VOLTS/DIV ranges. In the fully clockwise (CAL) position, the vertical attenuator is calibrated. During X-Y operation, this control serves as the X axis or Y axis attenuator fine adjustment.

7 AC-GND-DC

This lever selects the coupling method used for the CH1 vertical axis input signal. AC: Input signal is AC coupled, and DC component is blocked.

GND: Input signal and vertical amplifier are separated and input to vertical amplifier is grounded. This allows for confirmation of the ground potential.

DC: Input signal is DC coupled allowing for measurement including DC component. This lever servers as the X axis or Y axis input selector during X-Y operation.

(8) CH1 INPUT

Vertical axis input jack for channel 1. Serves as the X axis or Y axis input jack during X-Y operation.

● ● POSITION/PULL × 5 MAG ■

Performs the same function for channel 2 as the channel 1 **♦** POSITION control. Serves as the Y position adjustment control during X-Y operation.

10 VOLTS/DIV

Vertical axis attenuator for channel 2. Performs the same function for channel 2 as the channel 1 VOLTS/DIV control. Serves as the X axis or Y axis attenuation adjustment control during X-Y operation.

1 VARI (ABLE)

Rotation provides fine control of channel 2 attenuation. Performs the same function for channel 2 as the channel 1 VARIABLE control. Serves as the X axis or Y axis attenuation fine adjustment control during X-Y operation.

12 AC-GND-DC

This lever selects the coupling method used for the channel 2 vertical axis input signal. Performs the same function as the channel 1 AC-GND-DC control. Serves as the Y axis or Y axis input selector during X-Y operation.

13 CH2 INPUT

Vertical axis input jack for channel 2. Serves as the X axis or Y axis input jack during X-Y operation.

(14) V or Y MODE

This switch selects the vertical axis operation mode and serves as the Y axis selection switch during X-Y operation.

- CH1: Channel 1 input signal is displayed on the CRT. Channel 1 is the Y axis if this mode is selected during X-Y operation.
- **CH2:** Channel 2 input signal is displayed on the CRT. Channel 2 is the Y axis if this mode is selected during X-Y operation.
- ALT: Channel 1 and channel 2 signals are displayed alternately on the CRT with each sweep.
- **CHOP:** Channel 1 and 2 signals are displayed alternately on the CRT at a repetition rate of 50 kHz or more.
- ADD: The algebraic sum of the channel 1 and 2 signal is displayed on the CRT. If CH2 INV (15) is engaged, the difference is displayed on the CRT.

Note: -

The ALT, CHOP, and ADD modes cannot be used during X-Y operation.

15 CH2 INV

Inverts the polarity of the channel 2 signal.

16 TRIG or X 🔳 CH1 / 💻 CH2

This button selects the trigger source when an internal trigger (INT) is selected. Serves as the X axis selection switch during X-Y operation.

- **CH1:** Channel 1 input signal serves as the trigger source. Channel 1 becomes the X axis if this button is pressed during X-Y operation.
- **CH2:** Channel 2 input signal serves as the trigger source. Channel 2 becomes the X axis if this button is pressed during X-Y operation.

17 INTENSITY

Adjusts the brightness of the trace.

18 LEVEL/PULL SLOPE (–)

- **LEVEL:** Trigger level adjustment control. Determines point on trigger signal waveform where sweep starts.
- **SLOPE:** Trigger polarity selector. Pulling the knob triggers the sweep at the falling slope of the input waveform.

(19) AUTO/NORM (TRIG MODE)

Knob for selecting the triggering mode.

- **AUTO:** Triggered sweep operation when trigger signal is present, automatically generates sweep (free run) in absence of trigger signal.
- **NORM:** Normal triggered sweep operation. Unlike AUTO, no sweep appears when the proper trigger signal is not applied.

20 21 NORM/LINE (TRIG SOURCE)

Select the trigger source (sync signal source). The following trigger sources can be selected.

When NORM is selected with the switch 1, switch 1, selects either internal triggering (I INT) or external triggering (EXT).

INT: Internal triggering is selected and the sweep is triggered by the signal input for the vertical axis. Either the channel 1 or channel 2 signal can be selected as the trigger source using TRIG or X (16).

EXT: The trigger source is the signal applied to the EXT. TRIG jack ⁽²⁸⁾.

When LINE is selected with switch 20:

LINE: The sweep is triggered by the line power frequency.

22 23 TRIG COUPLING

Less A week

Select the coupling method used for the trigger signal.

When NORM is selected with switch (2), either AC coupling (\square AC) or DC coupling (\square DC) can be selected with switch (3).

- AC: Trigger signal is AC coupled to the sync circuit. Blocks DC component of input signal. Most commonly used position for waveform observation.
- **DC:** Trigger signal is DC coupled to the sync circuit. Sweep is trigger by signal including DC component.

When TV ($\underline{\ }$) is selected with switch $(\underline{\ })$, vertical sync ($\underline{\ }$) or horizontal sync ($\underline{\ }$) is selected by switch $(\underline{\ })$.

V: Sweep is triggered by vertical sync pulses of video signal.

H: Sweep is triggered by horizontal sync pulses of video signal.

24 SWEEP VARIABLE

Provides fine adjustment of sweep time; continuous adjustment is possible between steps selected by SWEEP TIME/DIV (3). Sweep time is calibrated by in the extreme clockwise (CAL) position.

25 SWEEP TIME/DIV

Sweep time coarse selector. Selects sweep times between 0.2 μ s/div and 1 s/div in 21 steps. Indicated values are calibrated when SWEEP VARIABLE (2) control is set to CAL position (fully clockwise). Oscilloscope is set to X-Y operating mode when this knob is rotated to fully counterclockwise (X-Y) position. In X-Y operation, sweeping stops and the source selected by TRIG or X (6) becomes the X axis amplifier and the source selected by V or Y MODE (4) becomes the Y axis amplifier.

26 ♦ POSITION/PULL × 5 MAG

Rotation adjusts the horizontal position of the trace on the display. Pulling this knob increases the sweep time five times. The SWEEP TIME/DIV value is 1/5 of the indicated value at this time.

③ GND Terminal

Chassis ground terminal used for establishing a common ground with other equipment.

28 EXT. TRIG Jack

Input terminal for external trigger signal. When the TRIG SOURCE (20) control is set to NORM and (21) is set to EXT, the signal input to this terminal becomes the trigger signal.

29 Fuse Holder

Contains the line fuse. Verify that the proper fuse is installed	d when replacing the line fuse.
100 V to 120 V	0.5A
200 V to 240 V	0.3A

HOITARBAD

BOTTOM PANEL

BRUCHOORY OMETRIATE DATES

(A) and familiarily proposition the new phase of an environmental distribution processor from the proresource of a standard sector parallel satisfies of memory as a resource of provident and environment of the proent inter-PET on the parallelet of standard sectors access short;

30 TRACE ROTATION

Electrically rotates trace to horizontal position. Adjust when strong magnetic fields cause the trace to be tilted.

(31) FOCUS

Adjusts the trace for optimum focus.

(Litter Marke)

OPERATION

INITIAL STARTING PROCEDURE

Until you familiarize yourself with the use of all controls, the following procedure may be used to standarize the initial setting of controls as a reference point and to obtain trace on the CRT in preparation for waveform observation.

When using the probe(s), refer to probe's instructions and "PROBE COMPENSATION" listed in APPLICATION of this manual.

[1] NORMAL SWEEP DISPLAY OPERATION

1. Push the POWER switch 1 – the power supply will be turned on and the pilot lamp will light.

Set these modes as follows; V or Y MODE (4): CH1 TRIG MODE (19): AUTO

- The trace will appear in the center of the CRT display and can be adjusted by the CH1
 POSITION ④ and ◄► POSITION ⑲ controls. Next, adjust the INTENSITY ⑦ and, if necessary, the FOCUS ③ for ease of observation.
- 3. Vertical Modes

Apply an input signal to the CH1 INPUT (a) jack and adjust the VOLTS/DIV (5) control for a suitable size display of the waveform. If the waveform does not appear in the display, adjust the VOLTS/DIV and \clubsuit POSITION controls to bring the waveform into the center portion of the CRT display. Operation with a signal applied to the CH2 INPUT (b) jack and the V or Y MODE set to CH2 is similar to the above procedure. In the ADD mode, the algebraic sum of CH1 + CH2 is displayed. If the CH2 INV (b) switch has been engaged, the algebraic difference of the two waveforms, CH1 - CH2 is displayed. If both channels are set to the same VOLTS/DIV, the sum or difference can be read directly in VOLTS/DIV from the CRT. In the ALT mode, one sweep displayes the channel 1 signal and the next sweep displays the channel 2 signal in an alternating sequence.

In the CHOP mode, the sweep is chopped at an approximate 50 kHz rate and switched between CH1 and CH2. Note that in the CHOP mode of operation, the trigger source becomes the chopping signal itself, making waveform observation impossible. Use ALT mode instead in such cases, or select a trigger SOURCE of CH1 or CH2. If no trace is obtainable, refer to the following TRIGGERING procedures.

4. After setting the SOURCE switch, adjust the SLOPE control. The display on the screen will probably be unsynchronized. Refer to TRIGGERING procedure below for adjusting synchronization and sweep speed to obtain a stable display showing the desired number of waveform.

TRIGGERING

The input signal must be properly triggered for stable waveform observation. TRIGGER-ING is possible the input signal INTernally to create a trigger or with an EXTernally provided signal of timing relationship to the observed signal, appliying such a signal to the EXT TRIG INPUT jack.

The SOURCE switch selects the input signal that is to be used to trigger the sweep, with INT sync possibilities (CH1, CH2, LINE) and EXT sync possibility.

★ Internal Sync

When the SOURCE selection is in NORM and INT (CH1 or CH2), the input signal is connected to the internal trigger circuit. In this position, a part of the input signal fed to the INPUT (a) or (b) jack is applied from the vertical amplifier to the trigger circuit to cause the trigger signal triggered with the input signal to drive the sweep.

When the V or Y MODE selection is in ALT, the ALT position is very convenient for measuring the time duration of the waveform. However, for phase or timing comparisons between the channel 1 and channel 2 waveforms, both traces must be triggered by the same sync signal.

When the SOURCE selection is in NORM and INT (CH1), the input signal at the channel 1 INPUT (a) jack becomes trigger regardless of the position of V or Y MODE. When the SOURCE selection is in NORM and INT (CH2), the input signal at the channel 2 INPUT (b) jack becomes trigger regardless of the position of V or Y MODE. When the SOURCE selection in LINE, the AC line voltage powering the oscilloscope is used as sync triggering.

* External Sync

When the SOURCE selection is in NORM and EXT, the input signal at the EXT TRIG INPUT (28) jack becomes the trigger. This signal must have a time or frequency relationship to the signal being observed to synchronize the display. External sync is prefered for waveform observation in many applications. For example, Fig. 6 shows that the sweep circuit is driven by the gate signal when the gate signal in the burst signal is applied to the EXT TRIG INPUT jack. Fig. 6 also shows the input/output signals, where the burst signal generated from the signal is applied to the instrument under test. Thus, accurate triggering can be achieved without regard to the input signal fed to the INPUT (8) or (13) jack so that no further triggering is required even when the input signal is varied.

Trigger signal (Gate signal) CH1 (Input signal to amplifier, etc.) CH2 (Output signal from amplifier, etc.)

Fig. 6

★ Triggering Level

Trigger point on waveform is adjusted by the LEVEL/PULL SLOPE (B) control. Fig. 7 shows the relationship between the SLOPE and LEVEL of the trigger point. Triggering level can be adjusted as necessary.

Fig. 7

* Auto Trigger

When the TRIG MODE (19) selection is in AUTO, the sweep circuit becomes free-running as long as there is no trigger signal, permitting a check of GND level. When a trigger signal is present, the trigger point can be determined by the LEVEL control for observation as in the normal trigger signal. When the trigger level exceeds the limit, the trigger circuit also becomes free-running where the waveform starts running. When the LEVEL control is pushed in and/or, when the trigger signal is absent or the triggering level exceeds the limit, there is no sweep.

(i.i.or obspectively more applications for brainple for 8 andres the brance of (i) a search of in a fire \$30 and a state of in \$30 and a state of the brain \$30 and a state of \$30 and \$3

[2] MAGNIFIED SWEEP OPERATION

Since merely shortening the sweep time to magnify a portion of an observed waveform can result in the desired portion disappearing off the screen, such magnified display should be performed using the MAGNIFIED SWEEP.

Using the ◀► POSITION control, adjust the desired portion of waveform to the CRT. Pull out the PULL × 5 MAG control to magnify the display 5 times. For this type of display the sweep time is the SWEEP TIME/DIV setting divided by 5.

[3] X-Y OPERATION

For some measurements, an external horizontal deflection signal is required. This is also referred to as an X-Y measurement, where the Y input provides vertical deflection and X input provides horizontal deflection.

X-Y operation permits the oscilloscope to perform many types of measurements not possible with conventional sweep operation. The CRT display becomes an electronic graph of two instantaneous voltages. The display may be a direct camparison of two voltages such as during phase measurement, frequency measurement with Lissajous waveforms. To use an external horizontal input, use the following procedure;

- 1. Set the SWEEP TIME/DIV control to the X-Y position.
- 2. Use the channel 1 probe for the vertical input and the channel 2 probe for the horizontal input.
- 3. Adjust the amount of horizontal deflection with the CH2 VOLTS/DIV and VARIABLE controls.
- 5. All sync controls are disconnected and have no effect.

[4] VIDEO SIGNAL OBSERVATION

The TV-V/H switch permits selection of vertical or horizontal sync pulse for sweep triggering when viewing composite video waveforms. In the TV-H position, horizontal sync pulses are selected as triggers to permit viewing of horizontal line of video. This is also the position used for viewing all non-video waveforms. In the TV-V position, vertical sync pulses are selected as triggers to permit viewing of vertical fields and frames of video. When observing the video waveforms, stable display is obtained on the screen regardless the TRIG LEVEL (18) control.

At most points of measurement, a composite video signal is of the polarity, that is, the sync pulses are negative and the video is positive. In this case, use "-" SLOPE.

If the waveform is taken at a circuit point where the video waveform is inverted, the sync pulses are positive and the video is negative. In this case, use ''+'' SLOPE.

APPLICATION

PROBE COMPENSATION

To obtain an accurate measurement result, the probe must be adjusted correctly before measurement.

- 1. Connect the probe to the INPUT terminal and set the control for a normal sweep display.
- 2. Connect the probe to the CAL terminal on the front panel, and adjust the SWEEP TIME/DIV control to display a few cycles of the signal output from it.
- 3. Adjust the trimmer on the probe to obtain the following correct compensation waveform.

TRACE ROTATION COMPENSATION

Rotation from a horizontal trace position can be the cause of measurement errors. Adjust the controls for a single display. Set the AC-GND-DC switch to GND and TRIG MODE to AUTO. Adjust the \blacklozenge POSITION control such that the trace is over the center horizontal graticule line. If the trace appears to be rotated from horizontal, align it with the center graticule line using the TRACE ROTATION control located on the front panel.

DC VOLTAGE MEASUREMENTS

This procedure describes the measurement procedure for DC waveforms. Procedure:

 Connect the signal to be measured to the INPUT jack.Set the V or Y MODE to the channel to be used. Set the VOLTS/DIV and SWEEP TIME/DIV switch to obtain a normal display of the waveform to be measured. Set the VARIABLE control to the CAL position.

serva Alasse ana actalized anti diss aldes is poplane. In this case, i.e., 17 5,004 If the wavetone is taken at a clicult polet where the alast wavetone converted, the conmissed are produce and the clice is negative, jeritik nase juse (* 17 31.096

- Set the AC-GND-DC switch to the DC position to observe the input waveform, including its DC component. If an appropriate reference level or VOLTS/DIV setting was not made, the waveform may not be visible on the CRT screen at this point. If so, reset VOLTS/DIV and/or the

 POSITION control.
- 4. Use the ◄► POSITION control to bring the portion of the waveform to be measured to the center vertical graduation line of the CRT screen.
- 5. Measure the vertical distance from the reference level to the point to be measured, (the reference level can be rechecked by setting the AC-GND-DC switch again to GND). Multiply the distance measured above by the VOLTS/DIV setting and the probe attenuation ratio as well. Voltages above and below the reference level are positive and negative values respectively.

Using the formula:

DC level = Vertical distance in divisions \times (VOLTS/DIV setting) \times (probe attenuation ratio).

[EXAMPLE]

For the example, the point being measured is 3.8 divisions from the reference level (ground potential). If the VOLTS/DIV was set to 0.2 V/div and a 10:1 probe was used. (See Fig. 9)

Substituting the given values: DC level = $3.8 (div) \times 0.2(V/div) \times 10 = 7.6 V$

MEASUREMENT OF THE VOLTAGE BETWEEN TWO POINTS ON A WAVEFORM

This technique can be used to measure peak-to-peak voltages.

Procedure:

- Apply the signal to be measured to the INPUT jack. Set the V or Y MODE to the channel to be used. Set the AC-GND-DC to AC, adjusting VOLTS/DIV and SWEEP TIME/DIV for a normal display. Set the VARIABLE to CAL.
- Using the POSITION control, adjust the waveform position such that one of the two points falls on a CRT graduation line and that the other is visible on the display screen.
- 3. Using the ◄► POSITION control, adjust the second point to coincide with the center vertical graduation line.
- 4. Measure the vertical distance between the two points and multiply this by the setting of the VOLTS/DIV control.

If a probe is used, further multiply this by the attenuation ratio.

Using the formula:

Volts Peak-to-Peak

= Vertical distance (div) × (VOLTS/DIV setting) × (probe attenuation ratio)

Fig. 10

[EXAMPLE]

For the example, the two points are separated by 4.4 divisions vertically. Set the VOLTS/DIV setting be 0.2 V/div and the probe attenuation be 10:1. (See Fig. 10)

Substituting the given value:

Voltage between two points = 4.4 (div) \times 0.2(V/div) \times 10 = 8.8V

ELIMINATION OF UNDESIRED SIGNAL COMPONENTS

The ADD feature can be conveniently used to cancel out the effect of an undesired signal component which superimposed on the signal you wish to observe.

Procedure:

- 1. Apply the signal containing an undesired component to the CH1 INPUT jack and the undesired signal itself alone to the CH2 INPUT jack.
- Set the V or Y MODE to CHOP and SOURCE to CH2. Verify that CH2 represents the unwanted signal in reverse polarity. If necessary reverse polarity by setting CH2 to INV.
- Set the V or Y MODE to ADD and CH2 VOLTS/DIV and VARIABLE so that the undesired signal component is cancelled as much as possible. The remaining signal should be the signal you wish to observe alone and free of the unwanted signal.

Signal without undesired component

Fig. 11

- STABALAUSARA VOBRUSAR - Marka Salaranan aras ara - Tara Provinsional aras aras ara

23

TIME MEASUREMENTS

This is the procedure for making time measurements between two points on a waveform. The combination of the SWEEP TIME/DIV and the horizontal distance in divisions between the two points is used in the calculation.

Procedure:

- Apply the signal to be measured to the INPUT jack. Set the V or Y MODE to the channel to be used. Adjust the VOLTS/DIV and SWEEP TIME/DIV for a normal display. Be sure that the VARIABLE control is set to CAL.
- Using the POSITION control, set one of the points to be used as a reference to coincide with the horizontal centerline. Use the POSITION control to set this point at the intersection of any vertical graduation line.
- 3. Measure the horizontal distance between the two points. Multiply this by the setting of the SWEEP TIME/DIV control to obtain the time between the two points. If horizontal " \times 5 MAG " is used, multiply this further by 1/5.

Using the formula:

Time = Horizontal distance (div) × (SWEEP TIME/DIV setting) × "× 5 MAG" value⁻¹ (1/5)

[EXAMPLE]

For the example, the horizontal distance between the two points is 5.4 divisions. If the SWEEP TIME/DIV is 0.2 ms/div we calculate. (See Fig. 12) Substituting the given value:

Time = 5.4 (div) \times 0.2 (ms/div) = 1.08 ms

FREQUENCY MEASUREMENTS

Frequency measurements are made by measuring the period of one cycle of waveform and taking the reciprocal of this time value as the frequency.

Procedure:

1. Set the oscilloscope up to display one cycle of waveform (one period).

2. The frequency is the reciprocal of the period measured.

Using the formula: Fre

$$q = \frac{1}{period}$$

Fig. 13

[EXAMPLE]

A period of 40 μ s is observed and measured. (See Fig. 13) Substituting the given value:

 $Freq = 1/[40 \times 10^{-6}] = 2.5 \times 10^{4} = 25 \text{ kHz}$

While the above method relies on the measurement directly of the period of one cycle, the frequency may also be measured by counting the number of cycles present in a given time period.

- 1. Apply the signal to the INPUT jack. Set the V or Y MODE to the channel to be used and adjusting the various controls for a normal display. Set the VARIABLE to CAL.
- Count the number of cycles of waveform between a chosen set of vertical graduation lines.

Using the horizontal distance between the vertical lines used above and the SWEEP TIME/DIV, the time span may be calculated. Multiply the reciprocal of this value by the number of cycles present in the given time span. If " \times 5 MAG" is used multiply this further by 5.

Note that errors will occur for displays having only a few cycles.

Using the formula:

of cycles × "× 5 MAG" value

Freq = Horizontal distance (div) × SWEEP TIME/DIV setting

[EXAMPLE]

For the example, within 7 divisions there are 10 cycles. The SWEEP TIME/DIV is 5 μ s/div. (See Fig. 14)

25

APPLICATION OF X-Y OPERATION

* Phase Shift Measurement

A method of phase measurement requires calculations based on the Lissajous patterns obtained using X-Y operations.

Distortion due to non-linear amplification also can be displayed.

A sine wave input is applied to the audio circuit being tested. The same sine wave input is applied to the vertical input of the oscilloscope, and the output of the tested circuit is applied to the horizontal input of the oscilloscope. The amount of phase difference between the two signals can be calculated from the resulting waveform. To make phase measurements, use the following procedure.

- 1. Using an audio signal generator with a pure sinusoidal signal, apply a sine wave test signal at the desired test frequency to the audio network being tested.
- Set the signal generator output for the normal operating level of the circuit being tested. If desired, the circuit's output may be observed on the oscilloscope. If the test circuit is overdriven, the sine wave display on the oscilloscope is clipped and the signal level must be reduced.
- 3. Connect the channel 2 probe to the output of the test circuit.
- Select X-Y operation by rotating the SWEEP TIME/DIV control clockwise to the X-Y position.
- Connect the channel 1 probe to the input of the test circuit. (The input and output test connections to the vertical and horizontal oscilloscope inputs may be reserved.)
- 6. Adjust the channel 1 and 2 gain controls for a suitable viewing size.
- 7. Some typical results are shown in Fig. 16.

If the two signals are in phase, the oscilloscope trace is a straight diagonal line. If the vertical and horizontal gain are properly adjusted, this line is at a 45° angle. A 90° phase sift produces a circular oscilloscope pattern.

Phase shift of less (or more) than 90° produces an elliptical oscilloscope pattern. The amount of phase shift can be calculated from the oscilloscope trace as shown in Fig. 15.

MAINTENANCE AND ADJUSTMENT

m A Caution : Read this page carefully to keep your safety.

For Electric Shock Protection:

Be sure to disconnect the power cable from the socket before conducting the following operation.

MAINTENANCE

There is high voltage used inside this unit. Never open the case.

REPLACEMENT OF FUSES

This oscilloscope will not function if the fuse has blown. If the fuse blows, determine the cause, and contact your dealer if the cause lies in this equipment.

If the cause was external to this equipment, remove the cause, detach the fuse holder from the rear panel using a flatblade screwdriver, and insert a new fuse.

MAINTENANCE AND ADJUSTMENT

ADJUSTMENT OF 3882 of vilutano aged and basic inotheria A

This oscilloscope was already fully adjusted when shipped from the factory. If adjustment becomes necessary, heed the following precautions.

- 1. Set the power supply voltage to the proper level.
- 2. Use only insulated adjustment screwdrivers for adjustment.
- 3. Turn on the power and allow the unit to warmup sufficiently before adjustment.
- 4. For any adjustment requiring measurement instruments, leave the unit in its current state and contact your dealer.

OSCILLOSCOPE ADJUSTMENT

This unit has a total of eight trimmers (see diagram below) which can be externally adjusted. If misadjustment occurs during use, adjust according to the procedures outlined below. Use plastic tipped screwdrivers for adjustment and use care to prevent shorting any of the circuits.

Fig. 18

ADJUSTMENTS

③ CH1 · ③ CH2 STEP BAL: Adjusts any vertical movement in the trace occurring when the VOLTS/DIV knob is rotated.

- 34 CH1 · 35 CH2 DC BAL: Adjusts any vertical movement in the trace occurring when the VARIABLE knob is rotated.
 38 CH1 · 37 CH2 GAIN: Adjusts the sensitivity of the vertical axis.
 - $1 \cdot 3$ CH2 GAIN: Adjusts the sensitivity of the vertical axis.
- TRACE ROTATION: Adjusts the trace when it is tilted due to effects of a strong magnetic field.
- (3) FOCUS: Adjusts the focus.

ADJUSTMENT PROCEDURES

TRACE ROTATION:Set the selector to the GND position, position the trace over
the reference scale on the display, and adjust if tilted.**FOCUS:**Adjust the focus for optimum sharpness of the waveform.

The STEP BAL and DC BAL adjustment begin with STEP BAL adjustment due to the circuit design.

STEP BAL: Set the selector to the GND position, and adjust for CH1 and CH2 so that the trace does not move when the VOLTS/DIV knob is switched between the 1, 2, and 5 ranges.

DC BAL: In the same manner as SET BAL, adjust for CH1 and CH2 so that the trace does not move VARIABLE knob is rotated from the right to the left extreme.

A highly accurate calibrator is needed for the GAIN adjustment. If such an instrument is not available, contact your dealer. (These trimmer are for correcting any sensitivity shifts in CH1 and CH2).

GAIN:

Accuracy will be improved if a calibration signal with an amplitude of 4 or 5 divisions on the CRT is used.

Contact your dealer if adjustment is not possible by the above procedures.

MEMO

"像黄鳍金属的小花枝头"之

	$\left\{ \left\{ x \in \{1, \dots, n\} : x \in \{1, \dots, n\} : x \in \{1, \dots, n\} \in \{1, \dots, n\} : x \in \{1, n\} \right\} \right\}$	
r Paris an an		
	- 建立一部分子的 	

ABRICEDORS CLEARTICLOS (

	e aleman sell in algebraicht im druge an anait sin isaith Cuirt do san bharmailte. Dath 1938 anna 1948 a searsaith Cuirt do san bharmailte. Dath 1938 anna 1948 a searsaith

na daj suddoj por redo goda devene di se dogođa da se dogođa se dogođa da se dogođa da se dogođa da o ENE se doke: Eksterno da se doke:

nga se 190 dé la consisti é la élho ebrana

医加尔德顿 计路里 建铝酸盐 机铁 自动 计数据极高级通信器 计分析算机计分析的算机 计公司分配设计 化分离子 化离离子化合合

ΜΕΜΟ

31

ONEM

A product of KENWOOD CORPORATION 17-5, 2-chome, Shibuya, Shibuya-ku, Tokyo 150, Japan