FL-180

WOW FLUTTER METER

INSTRUCTION MANUAL

WOW FLUTTER METER FL-180

The FL- 180 wow flutter meter measures wow and flutter of various types of sound recording machines, video recording machines and many other rotary machines such as tape recorders, VTR's and turntables in accordance with the JIS(Japan), NAB (U.S.A), CCIR(France) and DIN(Germany) standards.

Before using, please read this instruction manual carefully to insure the maximum performance and trouble-free operation of your FL-180

CONTENTS

FEATURES 3
SPECIFICATIONS 4
PANEL CONTROLS AND THEIR FUNCTIONS 6
Front panel 6
Rear panel 9
PRECAUTIONS 10
OPERATIONS 11
Preparation for operation 11
Operating procedures 11
Operation of wow flutter meter 11
Output terminal on Rear Panel 12
Operation of frequency counter 13
MAINTENANCE AND ADJUSTMENT 14
Maintenance 14
Adjustment 15

FEATURES

- Minimum operating input voltage is as lows as 0.5 mV , permitting measurements of wow and flutter directly from a small output tape head or PHONO cartridge.
* The FL-180 has a wide range of measurement range $(0.003$ to 10%) and is ready for use with professional type tape recorders and other rotary machines.
- RMS values (JIS), mean values (NAB) and peak values (CCIR/DIN) can be directly read according to international standards.
- Combination of wow and flutter, weighted or unweighted, can be measured on the basis of DIN standards. It is also possible to measure wow and flutter separately.
- High stability crystal oscillators are incorporated to provide 3 kHz and 3.15 kHz as recording signal source.
- Besides measuring wow and flutter, the FL-180 also indicates the speed of revolution on a 4-digit frequency counter.
The frequency counter reference time can be used for crystal control and selection of $A C$ power frequency ($50 / 60 \mathrm{~Hz}$).
- The FL- 180 can be switched to operate as a frequency counter.
- Adoption of monitor lamp allows measurements of wow and flutter without adjusting input level and input frequency. The monitor lamp flickers when the input frequency of the frequency counter exceeds " 9999 Hz ", indicating an overflow of frequency.
- $A C$ and DC voltage output terminals are provided for connecting a frequency ana-lyzer such as oscilloscope, pen recorder, digital memory scope or FFT analyzer to observe waveforms and analyze frequencies. AC voltage is proportional to wow flutter and DC voltage proportional to wow flutter and the speed of revolution.

SPECIFICATIONS

Wow flutter meter section

Measuring center frequency:
Within $3 \mathrm{kHz} \pm 300 \mathrm{~Hz}$ (JIS, NAB, CCIR)
Within $3.15 \mathrm{kHz} \pm 300 \mathrm{~Hz}$ (DIN)
Input level:
Input impedance:
Wow flutter measurement
range:
Display system:
Display accuracy:
Frequency response:
Weighted characteristic:

Wow characteristic:

Flutter characteristic:
Unweighted characteristic:
$0.5 \mathrm{mV} \sim 100 \mathrm{mV} .5 \mathrm{mV} \sim 30 \mathrm{~V}$, two ranges
$300 \mathrm{k} \Omega \pm 20 \%$, unbalanced
$\left.\begin{array}{l}0.003 \sim 10 \%(5 \mathrm{mV} \sim 30 \mathrm{~V} \text { range }) \\ 0.01 \sim 10 \%(0.5 \mathrm{mV} \sim 100 \mathrm{mV} \text { range })\end{array}\right\} 6$ ranges
RMS value (JIS)
Mean value (NAB)
Peak value (CCIR, DIN)
$\pm 5 \%$ of full scale (at 4 Hz)

In accordance with JIS, NAB, CCIR/DIN (at $0.2 \sim 200 \mathrm{~Hz}$)
$0.5 \sim 6 \mathrm{~Hz}(-3 \mathrm{~dB} \pm 1 \mathrm{~dB})(\mathrm{JIS} / \mathrm{NAB})$
$0.3 \sim 6 \mathrm{~Hz}(-3 \mathrm{~dB} \pm 1 \mathrm{~dB})(\mathrm{CCIR} / \mathrm{DIN})$
$6 \sim 200 \mathrm{~Hz}(-3 \mathrm{~dB}+1 \mathrm{~dB})$
$0.5 \sim 200 \mathrm{~Hz}(-3 \mathrm{~dB} \pm 1 \mathrm{~dB})$ (JIS/NAB)
$0.3 \sim 200 \mathrm{~Hz}(-3 \mathrm{~dB} \pm 1 \mathrm{~dB})(\mathrm{CCIR} / \mathrm{DIN})$
Roll off:

Maximum input voltage:
Input monitor:
Less than 0.5 Hz ; more than $-6 \mathrm{~dB} /$ oct (JIS/NAB)
More than 200 Hz ; more than $-15 \mathrm{~dB} /$ oct (JIS/NAB)
Less than 0.3 Hz ; more than $-6 \mathrm{~dB} /$ oct (CCIR/DIN)
More than 200 Hz ; more than $-15 \mathrm{~dB} /$ oct (CCIR/DIN)
100 V (DC + AC peak)
Level monitor lamp ON at more than $0.5 \mathrm{mV} / 5 \mathrm{mV}$ of input
Frequency counter section
Measuring frequency range:
Input level:
Input impedance:
Counting capacity:
$10 \sim 9999 \mathrm{~Hz}$
$100 \mathrm{mVrms} \sim 30 \mathrm{Vrms}$
$300 \mathrm{k} \Omega \pm 20 \%$ (unbalanced)
Decimal system, 4-digit LED memory display
Reference time:
Reference time frequency:
10.080 MHz (built-in crystal)
$A C$ power frequency ($A C$ line power)
$\pm 5 \times 10^{-5}\left(0 \sim 40^{\circ} \mathrm{C}\right)$ (built-in crystal)
Refer to $A C$ power supply accuracy. (AC line power) 1 sec .
\pm (1 digit + reference time accuracy)
100 V (DC + AC peak)
Level monitor lamp ON at more than 100 mV of input (flickers at more than " 9999 Hz ")

Output terminals

Recording output signal

Signal frequency:
Accuracy:
Output voltage:
Output impedance:
Distortion factor:
Drift output terminal (DRIFT)
Output voltage:
Output impedance: $\quad 600 \Omega \pm 20 \%$ (unbalanced)
Scope output terminal (TO SCOPE)
Output voltage:
Output impedance:
Approx, 3 Vrms of full scale

Recorder output terminal (RECORDER)
Output voltage:
Output impedance:
Power requirements
Voltage:
Power consumption:
Operating temperature:
Dimensions:

Weight:
Accessories:
$3 \mathrm{kHz}, 3.15 \mathrm{kHz}$
$\pm 5 \times 10^{-5}$
$0.2 \mathrm{Vrms} \pm 20 \%$ (open output)
$600 \Omega \pm 20 \%$ (unbalanced)
Less than 1% (600Ω terminated)
$600 \Omega \pm 20 \%$ (unbalanced)
Approx. DC 1 V of full scale
$600 \Omega \pm 20 \%$ (unbalanced)

AC $100 / 120 / 220 / 240 \mathrm{~V} \pm 10 \%, 50 / 60 \mathrm{~Hz}$
Approx. 14 W
$0 \sim 40^{\circ} \mathrm{C}$
Width $\quad 260 \mathrm{~mm}$
Height $\quad 150 \mathrm{~mm}$
Depth 318 mm
Approx. 5.3 kg
Connecting cord with plugs and clips

Approx. $\mathrm{DC} \pm 1 \mathrm{~V}$, for each $\pm 1 \%$ of frequency drift
(CA-36)
1 piece
AC cord ... 1 piece
Instruction manual.. 1 copy
Replacement fuse (0.5A)

2 pieces
(0.3A).. 2 pieces

PANEL CONTROLS AND THEIR FUNCTIONS

Fig. 1 Front panel

Front Panel

(1) POWER

Power switch. Press () the pushbution switch and the 4-digit frequency display LED (11) indicates " 0000 " (no input). The FL- 180 is ready for operation.
(2) OSC (JIS, NAB, CCIR/DIN)

Recording signal select switch. Press (he pushbutton switch and 3.15 kHz signal (DIN) is available at the OSC OUTPUT (3). By releasing () the switch. 3.0 kHz (JIS, NAB, CCIA) signal is obtained at the OSC OUTPUT (3)

Note:

When measuring wow and flutter of each standard, this switch should be set to the appropriate standard.
(3) OSC OUTPUT

Recording signal output terminal. A sine wave signal of the frequency selected by the recording signal select switch (2) is outputted. The output voltage is 200 mVrms , output impedance is 600 ohm and distortion factor is 1%. Select the desired standard when measuring wow and flutter of a tape recorder, etc.
(4) INDICATION (JIS)

Standard select swtich for measuring wow and flutter. Press the pushbutton switch and the meter (19) will indicate RMS value of JIS standard.
(5) INDICATION (NAB)

Press the pushbutton switch and the meter (19) will indicate a mean value of NAB standard.
(6) INDICATION (CCIR)

Press the pushbutton switch and the meter (19) will indicate a peak value of CCIR standard.
(7) INDICATION (DIN)

Press the pushbutton switch and the meter (19) will indicate a peak value of DIN standard.
(8) FUNCTION (WTD)

This switch is used to select the frequency component contained in wow and flutter to be measured. By pressing the pushbutton switch, weighted wow and flutter of each standard are measured.
(9) FUNCTION (WOW)

By pressing the pushbutton switch, wow with frequency component of $0.5 \sim 6$ $\mathrm{Hz}(0.3 \sim 6 \mathrm{~Hz})(-3 \mathrm{~dB})$ can be measured. [() for CCIR/DIN]
(10) FUNCTION (FLUTTER)

By pressing the pushbution switch, flutter with frequency component of $6 \sim$ $200 \mathrm{~Hz}(-3 \mathrm{~dB})$ can be measured.
(11) FUNCTION (UNWTD)

By pressing the pushbutton switch, wow and flutter on $0.5 \sim 200 \mathrm{~Hz}(0.3 \sim$ 200 Hz) band can be measured. [() for CCIR/DIN]
(12) INPUT

Input terminal for measuring wow flutter and frequency.
The input impedance is $300 \mathrm{k} \Omega$, and the maximum input voltage is $100 \mathrm{~V}(\mathrm{DC}+$ AC peak).
(13) LEVEL

Input sensitivity select switch for measuring wow and flutter. Press (囬) the pushbutton switch and wow flutter can be measured with more than 5 mV input voltage. Release (1) the switch to measure wow and flutter with more than 0.5 mV input.
(14) MODE

This switch is used to select the mode of measurement; wow flutter or frequency.
Press the pushbutton switch and the FL-180 functions as a frequency counter covering $10 \sim 9999 \mathrm{~Hz}$. Release the switch to measure wow and flutter.
(15) RANGE

This switch is used to select the wow flutter measurement range. It selects a maximum of 6 ranges, $0.03 \%, 0.1 \%, 0.3 \%, 1 \%, 3 \%$ and 10% full scale.

16 OVERFLOW/LEVEL MONITOR
During measurement of wow flutter, the monitor lamp will light when an input signal of specified level (selected by LEVEL (13)) and frequency ($3 \mathrm{kHz}, 3.15$ $k \mathrm{~Hz}^{\prime} \pm 300 \mathrm{~Hz}$ is present.
During measurement of frequency, this lamp will also light when a signal of specified input level (more than 100 mV) is present. The lamp flickers when the input frequency is more than 9999 Hz , indicating an overflow frequency.
Note:
The lamp flickers momentarily at the time of power ON. This is normal and is not an indication of trouble.
17 FREQUENCY
The 4-digit, red LED display indicates the frequency of wow flutter being measured. The maximum reading is "9999".
18 Carrying Grip
Use this grip when carrying the FL-180.
19 Meter
This meter indicates wow flutter for direct reading. It provides two full scale readings of " 10 " and " 3 " which correspond to each position of the RANGE switch (15).
20 Stand
This stand can be locked by pulling in the "arrow" direction (see Fig. 2).

Fig. 2 Use of auxiliary foot

Fig. 3 Rear panel

21 Cord Reel

This cord reel is used to store the power cord for carrying convenience.
22 Fuse Holder
A 0.3 A fuse is used for operating the FL- 180 on 220 V or 240 V AC power. For operation on 100 V or 120 V , it should be replaced with a 0.5 A fuse.
Note:
Never use a fuse with different current rating.
23 Power Connector
AC power connector. Use the supplied AC cord.
24 Power Selector Switch
Set this switch to the correct power voltage.
25 GND Terminal
Ground terminal.
Note:
Before using, the FL-180 must be properly earthed. Improper earthing can result in electrical shocks.
26 TO SCOPE
AC voltage proportional to wow flutter is available at this terminal. The output voltage is about 3 V full scale and the output impedance is about 600Ω. Used for observing waveforms or analyzing frequencies.

DRIFT
Drift output terminal. The frequency drift is about $D C \pm 1 \mathrm{~V}$ for $\pm 1 \%$ and the output impedance is about 600Ω. The output voltage is proportional to the speed of revolution of equipment under test.
28 RECORDER
This terminal provides DC voltage proportional to meter reading during measurement of wow flutter. The output voltage is about 1 V full scale and the output impedance is 600Ω.
29 REFERENCE FREQUENCY
This switch is used to set the frequency counter reference time for crystal control or AC power synchronization.
50 Hz - For 50 Hz areas
60 Hz - For 60 Hz areas
CRYSTAL - Crystal control
30 Voltage Nameplate
Use specified power voltage and fuse.

PRECAUTIONS

1. Do not expose the FL-180 to direct sunlight. Note that excessive temperature rise results in unstable performance or damages transistors and IC's.
2. Avoid using the FL-180 in locations with high temperature and humidity.
3. Use the FL-180 in vibration-free locations. Vibration can cause misoperation.
4. AC power fluctuation should be within $\pm 10 \%$ of the rated voltage. Power frequency is $50 / 60 \mathrm{~Hz}$.
5. Before the power is turned ON, check the mechanical zero point of the meter.
6. The FL- 180 should be used under temperatures of 0 to $40^{\circ} \mathrm{C}$.
7. In measuring wow flutter, confirm the applicable standard and condition.
8. The maximum input voltage is $100 \mathrm{~V}(\mathrm{DC}+\mathrm{AC}$ peak). Do not apply a voltage in excess of this limit. Never connect external voltage to the output terminals.
9. To prevent electrical shocks, be sure to connect the GND terminal (see (25) on the rear panel) to an appropriate earth point.
10. When measuring wow flutter, the FL-180 must be placed uprightly: otherwise, accurate measurements cannot be obtained.

Preparation for Operation

1. Set the power selector switch to the correct voltage observing the "arrow" mark on the plug. The FL-180 is factory set to operate on AC 240 V .
2. Set the control knobs as follows:

RANGE: 1%
FUNCTION: WTD
INDICATION: As desired
LEVEL, MODE, OSC: As desired.
3. Connect the power cord to the AC outlet and press the AC switch (1). The frequency display (17) will light to indicate " 0000 ".
The FL-180 is now ready for operation.
Note:
When the power is ON, the LED lamp (OVERFLOW/LEVEL MONITOR) (16) will flicker and the meter deflects off the scale.
This is normal and is not an indication that the meter is defective.

Fig. 4 Connecting the FL- 180

Operating Procedures:

Operation of wow flutter meter

1. Connect the FL- 180 to the equipment to be tested, such as tape recorder or turntable.
2. In testing tape recorder, use a wow flutter test tape, or record and play the signal of the OSC output terminal (3) . In testing turntable, use a wow flutter test record.
Note:
To measure wow flutter according to JIS, NAB or CCIR standard, use a tape or record containing 3 kHz of center frequency (3.15 kHz for DIN).
3. Plug an $A C$ power cord to $A C$ outlet. Push the pushbutton switch (D), and the 4 -digit frequency display (11) indicates "0000". The FL- 180 is ready for operation.
4. Set the MODE switch (14) to WOW FLUTTER. Next, set the LEVEL switch (13) to " $5 \mathrm{mV} \sim 30 \mathrm{~V}$ " and check that the MONITOR lamp (16) lights. If the input voltage is too small and the lamp does not light, set the LEVEL switch to " 0.5 $\mathrm{mV} \sim 100 \mathrm{mV}^{\prime \prime}$.
Note:
When the MONITOR lamp is OFF, the wow flutter cannot be measured accurately.
Then, confirm that the frequency display (17) is indicating $3 \mathrm{kHz}(3.15 \mathrm{kHz}$ for D(N) $\pm 300 \mathrm{~Hz}$.
Note:
If the input voltage is large, the MONITOR lamp will light with frequencies other than $3(3.15) \mathrm{kHz}$.
5. Select the FUNCTION switch ((B) ~ (11)) for the desired frequency component. The relationship between functions and frequency components is as follows:

Function	Frequency component (band)
WTD	Weighted frequency response of each
Wtandard $(0.2 \sim 200 \mathrm{~Hz})$	
FLU	$0.5(0.3) \sim 6.0 \mathrm{~Hz}$
UNWTD	$6.0 \sim 200 \mathrm{~Hz}$
	$0.5(0.3) \sim 200 \mathrm{~Hz}$

* () for DIN/CCIR

6. Select the INDICATION switch according to the rype of standard.
7. Set the RANGE switch (15) to the desired position so that wow flutter can be easily read on the meter (19)
Output Terminals on Rear Panel:

Fig. 5 Out put terminal on rear panel

Operation of frequency counter

1. Set the MODE switch (14) to FREQ•COUNTER and connect a signal to be measured to the input terminal (12). The LEVEL MONITOR lamp (16) will light if the input signal is more than 100 mV , indicating that the FL- 180 is operating as a frequency counter. The frequency is indicated in " Hz "

Note:

When the input frequency is more than 9999 Hz , the OVERFLOW lamp (16) flickers. In this case, the frequency on 10 kHz order is not indicated, for example, 13256 Hz is indicated as " 3256 ".
2. Select the position of the REFERENCE FREQUENCY switch on the rear panel to set the reference time (time gate) for crystal control or $A C$ power frequency synchronization.
Fig. 6 shows the connections of the FL-180 and the oscillator.

Fig. 6 Connection of the FL-180 and the oscillator

MAINTENANCE AND ADJUSTMENT

Maintenance

Removing the case (Fig. 7):

1. Remove the 2 screws on top of the case, 4 screws on side and 4 screws on bottom using a Phillips type screwdriver.
2. Remove the upper case by pulling upward and the lower case by pulling downward.

Fig. 7 Removing the case

Power voltage selection: (Fig. 8)
When operating the FL-180 on $100 \mathrm{~V}, 120 \mathrm{~V}$ or 220 V , set the voltage selector switch on the rear panel to the correct position.
For operation on 100 V or 120 V , take out the fuse (0.3A) in the fuse holder on the rear panel, and replace it with a 0.5 A fuse.

Note:
When changing the power voltage, be sure to remove the power cord from the AC outlet.

Adjustment

Adjustment of offset balance:
When the offset balance of the output terminals on the rear panel is deviated, it should be adjusted as follows:

1. Turn on the power to set the FL-180 in operation. Ascertain that the LEVEL. MONITOR lamp is OFF and the frequency display is indicating " 0000 " Hz .
2. Connect a tester, digital multimeter or oscilloscope to each output terminal and measure DC voltage.
3. Adjust the following volume controls to obtain DC OV on each output terminal Other adjustments

For adjustments requiring test instruments other than oscilloscope and multimeter, contact your nearest TRIO's agency.

Fig. 9 Location of adjustment

