PR-657

DC POWER SUPPLY

INSTRUCTION MANUAL

1. GENERAL

Your PR-657 is an all solid state voltage-regulated DC power supply, supplying 0 to $30 \mathrm{~V}, 7 \mathrm{~A}$ power. It provides improved temperature characteristics, line and load regulations and other characteristics. It also is so dependable that a built-in protective circuit can protect it against shortcircuits and overloads, thus requiring few troubleshooting. Using a remote control switch box (option) allows you to freely select any of four output voltages from a distant place.

CONTENTS

1. GENERAL 2
2. FEATURES 2
3. SPECIFICATIONS 3
4. CIRCUIT DESCRIPTION 4
5. CONTROLS AND WHAT THEY DO 6
6. HOW TO OPERATE 8
7. CAUTIONS FOR USE 11
8. PARTS LIST 12
9. P.C. BOARD 18
10. SCHEMATIC DIAGR 19

2. FEATURES

a. Your PR-657 provides advanced performance and high reliability as its differential amplifier is made up of IC.
b. The IC differential amplifier provides high open loop gain and good line and load regulations and little ripple.
c. The output voltage is continuously variable and can be set at any of 0 to 30 V .
d. The output current available is as high as 7 A .
e. A built-in protective circuit against output short or over load prevents the transistors from damage, minimizing occurrence of trouble.
f. An overcurrent indicator on the front panel lights when a built-in overcurrent protective circuit is in action.
This is helpful for your safety operation.
g. Preset switches enable you to instantaneously set any of three defferent output voltages without turning the output voltage control.
h. A remote control switch box (option) allows freely switching any of four output voltages from a distant place.

3. SPECIFICATIONS

Power Supply	
Voltage regulating characteristics,	
Output voltage:	0 to 30V.
Output current:	0 to 7A.
Line regulation (with	
$240 \mathrm{~V} \pm 10 \%$ change):	Better than $\pm 5 \mathrm{mV}$.
Load regulation:	Better than 10 mV .
Ripple and noise:	Less than 5 mV p-p.
Residual voltage:	Within 0 to +50 mV .
Meters,	
Voltmeter:	0 to 32V (full scale).
Ammeter:	0 to 7.5A (full scale).
Voltmeter accuracy:	Better than $\pm 3 \%$ of full scale.
Ammeter accuracy:	Better than $\pm 3 \%$ of full scale.
Transient response vime:	Shorter than $450 \mu \mathrm{sec}$ (with load turned on).
Temperature characteristics,	
Temperature coefficient:	Lower than $200 \mathrm{ppm} /{ }^{\circ} \mathrm{C} 10$ to $40^{\circ} \mathrm{C}$).
Operating temperature:	0 to $50^{\circ} \mathrm{C}$.
General	
Line,	
Input voltage:	$\begin{aligned} & 100,120,220, \text { or } 240 \mathrm{~V} \mathrm{AC} \\ & \pm 10 \% . \end{aligned}$

Frequency and power consumption:	50 to 60 Hz , below 430 W .
Insulation resistance:	Over 50Ms between line and cabinet (with 500 VDC).
Output comnectors,	
Polarity:	Positive (+), negative (-) and common (COM). Any connector may be grounded.
Dimensions:	$200(208) \mathrm{H} \times 208 \mathrm{~W} \times 363(401)$
	D mm
	Values in () include protrusion
Net weight:	13.6kg.
Accessories,	
Power cable:	1 piece
Plug for remote control:	1 piece.
Replacement fuse:	3A, 5A, 2 pieces respectively
Instruction manual:	1 copy.

4. CIRCUIT DESCRIPTION

In studying the operation of each circuit in your PR-657. please refer to Figure 1, the "Block Diagram", and the Schematic Diagram on the back cover.

Figure 1 Block Diagram

Main Power Source

The input AC voltage is fullwave-rectified by D1 (KBPC2502 bridge), is smoothed by $\mathrm{C} 1(15,000 \mu \mathrm{~F})$, and is fed to the Current Amplifier.

Auxiliary Power Source

This power source feeds $\pm 15 \mathrm{~V}$ regulated voltages to the voltage control circuit and protective circuit. The input voltage is full-wave rectified by D101 through D104 and is regulated to $\pm 15 \mathrm{~V}$ by Q101, D105, Q102 and D106. The +15 V voltage also is used to create a highly-stable, accurate 6.2 V reference voltage through D107 a hightemperature compensation zener diode D108. The voltage obtained at D107 is used as the reference voltage for the overcurrent protective circuit.

Differential Amplifier

This amplifier controls the output voltage, being comprised of IC101, Q103, Q104 and Q105. The output voltage can be varied with VR1. The adjusted voltage is amplified by 1C101, is passed through 0103, and is voltage and current-magnified by Darlington amplifier of 0104 and 0105 . The magnified voltage is fed through the emitter follower to the succeeding Current Amplifier stage. The Differential Amplifier is stable and quick in responding to a load change and the like so that IC101 is of open loop amplifier.

Overcurrent Detector

This detector is a protective circuit that prevents an overcurrent, being comprised of Q106, 1C102 and Q107.
The voltage induced across the output current detecting resistor R12 is compared with the reference voltage given at D107 in the comparator circuit IC102. If the output current reaches its overcurrent limit, IC102 operates, the output of which prompts Q106 to turn on to suppress the base potential of 0104. This prevents the output current from increasing more than limited. The Overcurrent Detector 1 has a drooping constantcurrent characteristic. When the protective circuit is in action, Q107 turns on the light-emitting diode D3, which indicates such an action.

Current Amplifier

This current amplifier consists of Q1 through Q7, Q1 being an emitter follower. The remaining $\mathbf{Q} 2$ through Q7 are connected in parallel.

Light

This light is an overcurrent indicator light-emitting diode (LED).

5. CONTROLS AND WHAT THEY DO

Front Panel

$\begin{aligned} & \text { REF. } \\ & \text { NO. } \end{aligned}$	PANEL INDICATION	FUNCTION
1	A	DC ammeter, 7A and higher zone of which are colored red.
2	V	DC voltmeter.
3	OVER CURR	LED Overcurrent indicator, which lights when output current exceeds overcurrent limit.
4		LED power-on indicator, which lights when POWER ON-OFF switch is turned on.
5	POWER ON/OFF	Power on-off switch, which turns on PR-657 at ON position.
6	OUTPUT ON/OFF	Output on-off switch, which turns on output voltage is fed to load.
7	VOLTAGE	Output voltage control, which raises voltage up when turned clockwise.
8	OUTPUT SELECTOR I-I-III	Preset voltage switch which switches output voltage to any of three values.
9	OUTPUT SELECTOR PRESET/VARIABLE	Preset-variable voltage selector which at supper position allows switch 8 to select preset voltage and at lower position allows VOLTAGE control 7 to vary output voltage.
10	\bigcirc	Negative connector to which negative load is connected.
11	$\underset{F}{\mp}$	Grounding connector earthed to chassis. In use, be sure to connect this to positive $(+)$, negative (-) or COM connector with short bar.
12	(1)	Positive connector to which positive lead of load is connected.

Rear Panel

13	PANEL/REMOTE	Panel/remote control selector, which was set at PANEL position at factory. For remote voltage selection, remove stopper to switch selector to REMOTE position.
14	REMOTE INPUT	Remote control connector. For remote voltage selection, connect remote control switch box to this 7-pin connector.
15		Line voltage selector of plug type. Plug can be removed by pulling backward. When inserting, plug arrow mark must direct rated line voltage.
16		Fuse holder containing 3 A fuse. Cap will be removed by turning counterclockwise with Phillips screw driver.
17		Power cable connector.

6. HOW TO OPERATE

(1)Using VOLTAGE Control

For operation with the VOLTAGE control 7 on the front panel, set up the controls as illustrated in Figure 2.

1. Set the PRESET/VARIABLE selector 9 to "VARIABLE".
2. Set the POWER ON-OFF switch 5 to "ON". The power-on indicator 4 will light to show that your PR-657 is ready for operation.
3. Adjust the VOLTAGE control 7 clockwise for a desired output voltage.
4. Firmly connect a load to the output connectors 10 and 12, which are floated from the chassis. Place the short bar between either of these connectors and the grounding connector. If not, hum may be induced in the output line.
5. Turn the OUTPUT ON-OFF switch 6 to " $\mathrm{ON}^{\prime \prime}$, by which the outpl" oltage will be supplied to the load.

Figure 3
NOTE: If the output current-exceeds around 7.2A, the overcurrent protective circuit operates and turns the overcurrent indicator 4 on. The circuit has a drooping constant-current characteristic as illustrated in Figure 3.

(2)Adjusting Preset Voltages

To adjust the preset voltages, set up the controls on the front panel as illustrated in Figure 4.

1. Set the PRESET/VARIABLE selector 9 to "PRESET".
2. Set the PRESET switch 8 to " 1 ".
3. Adjust the PRESET I semi-fixed control on the righthand side clockwise with a standard screw driver until the V meter 2 reads a desired voltage.
4. Similarly, proceed with adjustment for the PRESET II and III voltages.
5. This completes the preset voltage adjustment. Turning the PRESET switch 8 to " 1 ", " [l" and "ID" will produce the preset voltages in sequence.

NOTE: The preset position out of use should be set for 0 V output voltage for safety operaiton.

(3) Using Remote Control Switch Box (option)

To remote-control your PR-657, set up it and the remote control switch box.

Fir $\quad 5$

IMPORTANT

Turn the POWER ON-OFF switch to "OFF" before starting set-up procedures.

1. Connect the remote control switch box cable to the REMOTE INPUT connector 14 on the rear panel.
2. Remove the stopper from the PANEL/REMOTE control selector 13 and set this to "REMOTE".
3. This is ready for remote control operation. Tuning the remote control switch will select either of the three preset voltages 1,11 and 111 and the voltage set by the VOLTAGE control 7.

CAUTION

For making the remote control switch box
Use a 6 -core shielded cable. Do not extend it longer than 2 m . Be sure to use a shorting type of switch.

(4) Connecting Two or More Units of PR-657 in Series

To use two units of PR-657, connect a load as illustrated below. The sum of two output voltages is applied across the load.

Figure 7

CAUTIONS

1. The protective diodes used should have higher than 7.5 A average forward current and higher than 50 V inverse peak voltage.
2. In needing the positive ploarity at the load, connect short bar at the position (a). For negative polarity, place it at the position (b).

7. CAUTIONS FOR USE

1. Do not use your PR-657 set in direct sunlight since this will cause the internal temperature to rise, resulting in unstable operation and damaging of the internal components.
2. Avoid use at high temperatures and hight humidity.
3. Do not use in locations where server vibrations are produced or near places where strong magnetic fields or shock voltage are generated. Otherwise the transistors will be adversely affected.
4. When using your PR-657 set with other equipment which is easily affected by power line fluctuations, such as an oscilloscope, the other equipment will be adversely affected if the power supply set is placed close to it or atop it. Therefore, place the power supply set as far away from the other equipment as possible.
5. For connection of load, firmly tighten each connector. The load leads should be wired as short as possible. Poor connection and high wiring resistance result in unstable output voltages.
6. Do not put any matter close to the ventilation openings on both sides and rear panel as the controlled transistors are forcibly cooled by fan.

7. Replacing the fuse

a. Open the fuse holder using a Phillips screw driver.
b. Replace the fuse.

CAUTION: Be sure to select the fuse of rated capacity. For a 100 and 120 V AC lines, use a 5 A fuse; a 220 and 240 V AC lines, a 3 A fuse.

8. PARTS LIST OF PR-657

SCHEMATIC SYMBOL	PARTS NO.		DESCRIPTION			REMARKS
RESISTOR						
R1	RS14AB3D1R5J	Metal film	1.5Ω	$\pm 5 \%$	2 W	
R2	RW14BA2H010J	Wirewound	1Ω	$\pm 5 \%$	1/2W	
R3	RS14AB3DR47J	Metal film	0.47Ω	$\pm 5 \%$	2 W	
R4	RW14BA2H010J	Wirewound	1Ω	$\pm 5 \%$	1/2W	
R5	RS14AB3DR47J	Metal film	0.47Ω	$\pm 5 \%$	2 W	
R6	RW14BA2H010J	Wirewound	1Ω	$\pm 5 \%$	1/2W	
R7	RS14AB3DR47J	Metal film	0.47Ω	$\pm 5 \%$	2 W	
R8	RW14BA2H010J	Wirewound	1Ω	$\pm 5 \%$	$1 / 2 \mathrm{~W}$	
$R 9$	RS14AB3DR47J	Metal film	0.47Ω	$\pm 5 \%$	2 W	
R10	RW14BA2H010J	Wirewound	1Ω	$\pm 5 \%$	1/2W	
R11	RS14AB3DR47J	Metal film	0.47Ω	$\pm 5 \%$	2 W	
R12	RW98AA3HR33J $\times 2$ (paralleling)	Wirewound	0.15Ω	$\pm 5 \%$	10 W	
R13	RW98AA3DR 10 J	Wirewound	0.1Ω	$\pm 5 \%$	2 W	
R14	RW98AA3H331J	Wirewound	330Ω	$\pm 5 \%$	5W	
R19	RW 14BA2H010J	Wirewound	1Ω	$\pm 5 \%$	1/2W	
R20	RS14AB3DR47J	Metal film	0.47Ω	$\pm 5 \%$	2 W	
R21	RD14BB2E102J	Carbon	$1 \mathrm{k} \Omega$	$\pm 5 \%$	$1 / 4 W$	
R22	RD14BB2E223J	Carbon	$22 \mathrm{k} \Omega$	$\pm 5 \%$	$1 / 4 W$	
VR 1	R03-3501-08	Variable resistor	$20 \mathrm{k} \Omega \mathrm{B}$			
$V R 2 \sim 4$	R01-3501-08	Variable resistor	$20 \mathrm{k} \Omega \mathrm{B}$			
			TOR			
C1	C91-0515-08	Electrolytic	$15000 \mu \mathrm{~F}$		63 WV	
C2	CO92M1H104K	Mylar	$0.1 \mu \mathrm{~F}$	$\pm 10 \%$	50 WV	
C3	CE02W1H101	Electrolytic	$100 \mu F$		50 WV	

SCHEMATIC SYMBOL	PARTS NO.	DESCRIPTION		REMARKS
$\begin{aligned} & \mathrm{C} 5 \sim 8 \\ & \mathrm{C} 9 \\ & \mathrm{C} 10 \\ & \mathrm{C} 11 \end{aligned}$	CK45D2H103M CK45D1H103M CK45D1H473M CEO2W1H2R2	Ceramic $0.01 \mu \mathrm{~F}$ $\pm 20 \%$ Ceramic $0.01 \mu \mathrm{~F}$ $\pm 20 \%$ Ceramic $0.047 \mu \mathrm{~F}$ $\pm 20 \%$ Electrolytic $2.2 \mu \mathrm{~F}$	$\begin{aligned} & 500 \mathrm{WV} \\ & 50 \mathrm{WV} \\ & 50 \mathrm{WV} \\ & 50 \mathrm{WV} \end{aligned}$	
$\begin{aligned} & \mathrm{Q} 1 \sim 7 \\ & \mathrm{D} 1 \\ & \mathrm{D} 3,4 \end{aligned}$		SEMI-CONDUCTOR Transistor SDT9308 or 2SD113 Diode KBPC2502 Light emitting diode GL-52AR		
$\begin{aligned} & \mathrm{M} 2 \\ & \mathrm{M} 1 \end{aligned}$	A01-0817-18 A13-0713-18 A13-0714-08 A20-2714-18 A22-0805-18 A23-1610-08 A40-0704-18 B31-0704-08 B31-0705-08 B40-0765-04 B41-0705-04 B50-2838-00 D32-0075-04 E03-0201-05 E06-0761-08 E07-0761-08 E08-1081-05 E09-0681-05	miscellaneous Case Frame (1) Frame (2) Panel Sub-panel Rear panel Bottom plate Voltmeter Ammeter Name plate Name plate (power source) Instruction manual Switch stopper Power connector Connector (receptacle, for remote control) Connector (plug, for remote control) Line voltage selector (receptacle) Line voltage selector (plug)		

SCHEMATIC SYMBOL	PARTS NO.	DESCRIPTION	REMARKS
	E21-0150-03	Terminal (grey)	
	E21-0151-03	Terminal (orange)	
	E21-0653-03	Terminal (blue)	
	E22-1081-08	Lug board 10P	
	E22-1581-08	Lug board 15P	
	E29-0506-04	Short bar	
	E30-1818-05	Power cord	
	F01-0810-08	Heat sink $\times 6$	
	F01-0811-08	Heat sink	
	F05-3021-05	Fuse $\quad 3 \mathrm{~A} \quad \mathrm{X} 2$	
	F05-5022-05	Fuse $\quad 5 \mathrm{~A} \quad \mathrm{X} 2$	
	F15-0704-08	Blind rubber (1)	
	F15-0705-08	Blind rubber (2)	
	F19-0703-04	Patch, for selector	
	H01-2825-08	Packing case (individual packing)	
	H10-0518-08	Packing material X2	
	H20-1707-08	Protection cover	
	H25-0029-04	Polyethylene bag	
	J03-0010-05	Rubber leg $\times 4$	
	J13-0033-15	Fuse holder	
	J21-2845-18	Heat sink mounting hardware (1)	
	J21-2846-08	Fanmotor mounting hardware (1)	
	J21-2852-08	Heat sink mounting hardware (2)	
	J21-2853-08	Heat sink mounting hardware (3)	
	J21-2854-08	Fanmotor mounting hardware (2)	
	J31-0601-08	Spacer	
	J32-0811-08	Boss	
	K01-0058-25	Grip	

SCHEMATIC SYMBOL	PARTS NO.	DESCRIPTION	REMARKS
	K29-0208-24		
	K21-0283-04	Knob, for variable resistor	
T1	L01-9066-08	Power transformer	
S1	S44-2501-08	Toggle switch	
S2	S44-4501-08	Toggle switch	
S3	S32-2013-05	Lever switch	
S4	S31-2040-08	Slide switch	
S5	S32-2012-05	Lever switch	
	X65-1190-00	Main unit	

PARTS LIST OF X65-1190=00

SChEMATIC	PARTS NO.	description				REMARKS
RESISTOR						
R101, 102	RD14BB2E102J	Carbon	$1 \mathrm{k} \Omega$	$\pm 5 \%$	1/4 W	
R103	RD14BB2E331J	Carbon	330Ω	$\pm 5 \%$	$1 / 4 \mathrm{~W}$	
R104	RD14BB2E201J	Carbon	200Ω	$\pm 5 \%$	$1 / 4 \mathrm{~W}$	
R105	RN14AK2E242F	Metal film	$2.4 \mathrm{k} \Omega$	$\pm 1 \%$	$1 / 4 \mathrm{~W}$	
$R 106$	RD14BB2E102J	Carbon	$1 \mathrm{k} \Omega$	$\pm 5 \%$	$1 / 4 \mathrm{~W}$	
R107	RD14BY2H222J	Carbon	$2.2 \mathrm{k} \Omega$	$\pm 5 \%$	$1 / 2 \mathrm{~W}$	
R108	RD14BB2E302J	Carbon	$3 \mathrm{k} \Omega$	$\pm 5 \%$	$1 / 4 \mathrm{~W}$	
R109	RD14BB2E102J	Carbon	$1 \mathrm{k} \Omega$	$\pm 5 \%$	$1 / 4 \mathrm{~W}$	
R110	RD14BB2E103J	Carbon	$10 \mathrm{k} \Omega$	$\pm 5 \%$	$1 / 4 \mathrm{~W}$	
R111	RD14BB2E112J	Carbon	$1.1 \mathrm{k} \Omega$	$\pm 5 \%$	$1 / 4 \mathrm{~W}$	
R112	RD14BB2E103J	Carbon	$10 \mathrm{k} \Omega$	$\pm 5 \%$	$1 / 4 \mathrm{~W}$	
R113	RD14BY2H680J	Carbon	68Ω	$\pm 5 \%$	$1 / 2 \mathrm{~W}$	
R114	RD14BB2E362J	Carbon	3.6 k Ω	$\pm 5 \%$	$1 / 4 \mathrm{~W}$	
R115	RD14BB2E152J	Carbon	$1.5 \mathrm{k} \Omega$	$\pm 5 \%$	$1 / 4 \mathrm{~W}$	
R116, 117	RD14BE2E 102J	Carbon	$1 \mathrm{k} \Omega$	$\pm 5 \%$	$1 / 4 \mathrm{~W}$	
R118	RD14BB2E511J	Carbon	510Ω	$\pm 5 \%$	1/4W	
R119	RD14BB2E472J	Carbon	$4.7 \mathrm{k} \Omega$	$\pm 5 \%$	$1 / 4 \mathrm{~W}$	
R121	RD14BY2H222J	Carbon	$2.2 \mathrm{k} \Omega$	$\pm 5 \%$	$1 / 2 \mathrm{~W}$	
R144	RD14BY2E3R3	Carbon	3.3Ω	$\pm 5 \%$	1/4W	
VR101	R12-1033-05	Semi-fixed resistor	$2.2 \mathrm{k} \Omega \mathrm{B}$			
VR102	RT2-1002-05	Semi-fixed resistor	$1 \mathrm{k} \Omega \mathrm{B}$			
		capa	TOR			
C101, 102	CEO4W1V221	Electrolytic	$220 \mu \mathrm{~F}$		35 WV	

9. P. C. BOARD

Q101:2SD400, Q102: 2SB544, Q103 104,106, 107: 2SC 983, Q105: 2SD525, 0101~104: GP10-4002

10. SCHMATIC DIAGRAM

KENWOOD CORPORATION
17-5, 2-chome, Shibuya, Shibuya-ku, Tokyo 150. Japan
(C) 96002 PRI TDINJAPAN B50-2838-10 (KM)

