

NOISE METER

VT-172

INSTRUCTION MANUAL

KENWOOD CORPORATION

CONTENTS

1. GENERAL 3
2. FEATURES 3
3. SPECIFICATIONS 4
4. CONTROLS AND INDICATORS 7
5. OPERATION 10
6. PRECAUTION 11
7. MAINTENANCE 12
8. ADJUSTMENT 13
9. APPENDIX 16

1. GENERAL

The Noisemeter is an high-sensitive electronic voltmeter having a maximum sensitivity of $10 \mu \mathrm{~V}$ fullscale. Its wide frequency range covers from 10 Hz to $500 \mathrm{kHz}(1 \mathrm{mV}$ $\sim 300 \mathrm{~V}$) and the five types of weighting are selectable. In addition, DIN or CCIR quasi-peak or average detection with RMS display is selectable, making possible S / N and noise measurements in accordance with JIS-A, DIN NOISE, DIN AUDIO, CCIR and CCIR/ ARM standards.
The units are also provided with an overload indicator, a 10 dB range relative reference adjustment and AC and DC outputs.

2. FEATURES

a. $\quad 10 \mu \mathrm{~V}$ fullscale maximum sensitivity with $0.2 \mu \mathrm{~V}$ graduated scale for measurements down to -120 dB .
b. Button selection of JIS-A, DIN NOISE, DIN AUDIO, CCIR and CCIR/ARM weighting filters make possible noise measurements and S / N measurements in accordance with a variety of standards.
c. In addition to average detection and RMS display, DIN and CCIR semi-peak detection with RMS display is available for measurements in accordance with those standards.
d. AC OUT and DC OUT terminals are provided to facilitate waveform observation, recording of measured values or use of the unit as an amplifier.
e. A relative reference adjustment from $0 \sim-10 \mathrm{~dB}$ makes possible relative measurements of signals with respect to an arbitrarily set reference level, particularly useful in S / N measurement.
f. An overload indication prevents measurement errors caused by distortion not detected by the operator by viewing the meter level for use with the weighting filters.

3. SPECIFICATIONS

```
[Voltmeter Section]
Voltage ranges:
dB :
dBm :
Display accuracy: With average detection in FLAT
mode:
10\muV}\mathrm{ and }30\mu\textrm{V}\mathrm{ ranges: within
\pm5% of fullscale
100\muV~300V ranges:within }\pm3
of fullscale
With quasi-peak detection and
DIN NOISE, DIN AUDIO or
CCIR weighting filter:
10\muV range: within }\pm7%\mathrm{ of
fullscale
30\muV~300V ranges: within }\pm5
of fullscale
```

Frequency response: With average detection and RMS display
$10 \mu \mathrm{~V}$ range: $20 \mathrm{~Hz} \sim 10 \mathrm{kHz} \pm 5 \%$
$10 \mathrm{~Hz} \sim 30 \mathrm{kHz} \pm 10 \%$
$30 \mu \mathrm{~V} \sim 300 \mu \mathrm{~V}$ ranges:
$20 \mathrm{~Hz} \sim 20 \mathrm{kHz} \pm 5 \%$
$10 \mathrm{~Hz} \sim 100 \mathrm{kHz} \pm 10 \%$
$1 \mathrm{mV} \sim 300 \mathrm{~V}$ ranges:
$20 \mathrm{~Hz} \sim 100 \mathrm{kHz} \pm 3 \%$
$15 \mathrm{~Hz} \sim 300 \mathrm{kHz} \pm 5 \%$
$10 \mathrm{~Hz} \sim 500 \mathrm{kHz} \pm 10 \%$
With quasi-peak detection and
RMS display
$10 \mu \mathrm{~V}$ range: $30 \mathrm{~Hz} \sim 15 \mathrm{kHz} \pm 5 \%$
$20 \mathrm{~Hz} \sim 20 \mathrm{kHz} \pm 10 \%$
$10 \mathrm{~Hz} \sim 30 \mathrm{kHz} \pm 20 \%$
$30 \mu \mathrm{~V} \sim 300 \mathrm{~V}$ ranges:
$30 \mathrm{~Hz} \sim 20 \mathrm{kHz} \pm 5 \%$
$20 \mathrm{~Hz} \sim 50 \mathrm{kHz} \pm 10 \%$
$10 \mathrm{~Hz} \sim 100 \mathrm{kHz} \pm 20 \%$
Input impedance :
$1 M \Omega \pm 5 \%$
Parallel capacitance:
50 pF or less

Overload voltage level: $10 \mu \mathrm{~V} \sim 300 \mu \mathrm{~V}$ ranges:
AC 10 Vrms , DC 500 V
$1 \mathrm{mV} \sim 300 \mathrm{mV}$ ranges:
AC 80 Vrms
500 V (DC+ACpeak)
$1 \mathrm{~V} \sim 300 \mathrm{~V}$ ranges:
500 V (DC+ACpeak)
Relative reference adjustment :
0~approx. -12dB
Over level:
Lights up or flickers when a signal of more than +15 dB for maximum value is applied.
This indicates that there is a possibility of erroneous
indication due to over input
when a level weighting filter is used.
Residual noise: Average detection:
$10 \mu \mathrm{~V}$ range input shorted, Input equality value
Below $1.5 \mu \mathrm{Vrms}(1.0 \mu \mathrm{Vrms}$ TYP.)
$30 \mu \mathrm{~V}$ range, input shorted, Input
equality value
Below $5 \mu \mathrm{~V}$ s $s(3.0 \mu \mathrm{Vrms}$ TYP.)

Stability :

[Amplifier Section]

AC AMPLIFIER :
Gain :
Output voltage :
Output resistance:
Distortion :

S/N:
$-5-$

Peak detection:
$10 \mu \mathrm{~V}$ range input shorted, Input equality value
Below $2.0 \mu \mathrm{Vrms}(1.0 \mu \mathrm{Vrms}$ TYP.)
$30 \mu \mathrm{~V}$ range input shorted, Input equality value
Below $5 \mu \mathrm{Vrms}(3.0 \mu \mathrm{Vrms}$ TYP.)
Within $\pm 0.5 \%$ of fullscale for $\pm 10 \%$ line voltage fluctuation.

Approx. 100dB
$1 \mathrm{Vrms} \pm 10 \%$
$600 \Omega \pm 10 \%$
Below 1% of fullscale at 1 kHz This distortion is determined by the S / N for the ranges $10 \mu \mathrm{~V} \sim$ $300 \mu \mathrm{~V}$
With respect to fullscale:
$1 \mathrm{mV} \sim 300 \mathrm{~V}$ ranges: 40 dB minimum
$300 \mu \mathrm{~V}$ range: $\quad 30 \mathrm{~dB}$ minimum
$100 \mu \mathrm{~V}$ range: $\quad 25 \mathrm{~dB}$ minimum
$30 \mu \mathrm{~V}$ range: $\quad 20 \mathrm{~dB}$ minimum
in 4 V range: 16.5 dB minimum

```
Frequency response : }1\textrm{mV}~300\textrm{V}\mathrm{ ranges:
    10Hz~500kHz}\mathrm{ within }\pm3\textrm{dB
    30\muV~300 }\textrm{N}\mathrm{ V ranges:
    10Hz~150kHz within }\pm3\textrm{dB
    10\muV range:
    10Hz~30kHz within }\pm3\textrm{dB
DC OUTPUT AMPLIFER:
Output voltage: }\quad1\textrm{V}\pm10%\mathrm{ for fullscale
Output resistance: 600\Omega }\pm10
Frequency response: Approx the same as the meter
    indication.
[Environmental]
coefficient : 0.08%/\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ or less}
    (at 1mV range or more)
Operating temperature and humidity for within
specification: 15~ 35'C, 80% RH maximum.
Full operating range: 0~50'C, 80% RH maximum.
[Power Supply Section]
Supply voltage: 100/117/220/240VAC }\pm10
    (Max. 250VAC) 50/60Hz
Power consumption: Approx. 15W
[Dimensions] Width 128mm, Height 190(214)mm
    Depth 285(315)mm
    () di rsions include protrusions
from the basic case.
4.6 kg

Power card ......................... 1
Input cable(CA-41)1
Instruction manual ..... 1
4. CONTROLS AND INDICATORS


Fig. 1 Front panel view

\section*{FRONT PANEL}
(1) POWER (ON m /OFF 量) Switch AC power switch.
(2) Power Lamp

Indicates the VT-172 is powered up. Lights when POWER is depressed.
(3) RANGE Selector Switch

Attenuator selector switch. 16 positions in 10 dB steps. To prevent excessive inputs, this switch is started in the highest, 300 V range and gradually worked down range to provide an easily readable meter deflection.
(4) INPUT Juck

BNC signal input connector.
(5) RELATIVE REF Control and (6) UNCAL Lamp Sensitivity adjustment and uncalibrated annunciator. More than 10 dB of adjustment is possible. When the controlis turned fully clockwise, the set range is calibrated. This control can be used to adjust the meter to an appropriate level for relative measurements. When not set at fully clockwise the UNCAL lamp lights to warn the operator.
(7) OVERLEVEL Lamp

When using weighting filters the effect of the filter is to mask from the operator the presence of an excessively high input level. Thus distortion and the resulting errors can occur without the operator being aware of this condition. To prevent this the OVERLEVEL warning lamp alerts the operator when the input level goes +15 dB above the full scal level ( 0 dB ).
(8) AVERAGE/PEAK Switch

This switch is used to select the detection method.
In the released position average detection and RMS display are in effect. Depressing the switch selects either DIN or CCIR quasi-peak detection and RMS display of the signal level. When CCIR/ ARM is selected the detection method is automatically switched to average detection and RMS display regardless of the position of this switch.
(9) WEIGHT Switch group

This six position selection switch group allows selection of one of FLAT or JIS-A, DIN NOISE, DIN AUDIO, CCIR or CCIR/ARM weighted response. Selection of the FLAT position turns
the unit into a wideband \(A C\) voltmeter. If no button is depressed, the mode is automatically CCIR/ARM.

JIS-A :
Used for noise level measurements in accordance with JIS C1502A, JIS C5551A, IEC-A, and IHF-A standards.

DIN NOISE :
Used for noise level measurements in accordance with DIN standard 45405.

DIN AUDIO:
Used for \(10 \mathrm{~Hz} \sim 20 \mathrm{kHz}\) audio level measurements in accordance with DIN standard 45405.
CCIR :
Used for measurements of noise level in accordance with CCIR standards.
CCIR/ARM :
Used for noise level measurements in accordance with CCIR/ARM standards.
This measuring equipment is recommended by Dolby Laboratorie.
When the CCIR/ARM filter is used, average detection is used regardless of the AVERAGE/ PEAK switch.

The appropriate AVERAGE/PEAK switch settings for the various filters are :
\begin{tabular}{|l|c|c|}
\hline Filter: & AVERAGE & PEAK \\
\hline JIS-A & \(O\) & - \\
\hline DIN NOISE & - & \(O\) \\
\hline DIN AUDIO & \(O\) & \(O\) \\
\hline CCIR & - & \(O\) \\
\hline CCIR/ARM & \(O\) & - \\
\hline
\end{tabular}
(10) METER
(11) METER Zero-adjust Trimmer

Fig. 2 Rear panel view

\section*{REAR PANEL}
(12) AC OUTPUT Juck

This output is used for waveform observation or for used of the VT-172 as an amplifier.
(13) DC OUTPUT Juck

This output is used for recording off-line measured values.
(14) GND Terminal

Ground connection.
(15) AC POWER Connector

This is AC power input connector. Use the power cord provided with the unit.
(16) AC LINE VOLTAGE Selector

Set the plug of this selector to the local line voltage (100/117/220/240V AC).
(17) FUSE Holder

Use a screwdriver to open this holder for replacement of the fuse of specified rating.

For 100 or \(117 \mathrm{~V}: 0.5 \mathrm{~A}\)
For 220 or \(240 \mathrm{~V}: 0.3 \mathrm{~A}\)

\section*{5. OPERATION}
1. Check the mechanical zeroing of the meter.
2. Connect the signal cable to INPUT (4)
3. Set the RANGE switch (3) to the 300 V range.
4. Connect the power cord and press the POWER (1) switch to turn the unit ON. The red LED (2) should light indicating the unit is ready for use.
5. Input the signal to be measured and if necessary gradually switch to lower (more sensitive) ranges until an easy to read meter deflection is obtained.

\section*{USING RELATIVE REF}

To make measurements with respect to some arbitrary reference level, input the signal to be used as the reference level and use RELATIVE REF (5) to obtain a OdB meter deflection without changing the RELATIVE REF setting measurement of other signals can be made and read directly off the dB scale in dB with respect to the reference level.

The adjustment range of the RELATIVE REF control is from 0 to -12 dB (negative only) so to set OdB for signal under 0 dB switching down range must be done.

\section*{READING THE METER SCALES (See Fig. 3)}
(1) VOLTAGE SCALES

Thesc scales consist of a \(0 \sim 10\) and \(0 \sim 3\) scale which are used to read ranges which are multiples of 10 and 3 respectively. The range setting always refers to the meter fullscale deflection. The ranges are designed to overlap to allow values on the lower portion of one range to be more accurately read on the upper portion of the next more sensitive range.
(2) dBm SCALES

A level of 1 mW into a \(600 \Omega\) resistance is take as \(0 \mathrm{dBm}(0.775 \mathrm{~V})\) and readings are made in 0 dBm with respect to this standard reference level.


Fig. 3

\section*{6. PRECAUTIONS}
1. To assure accurate measurements allow a five minute warming up period before actual measurements are begin. Note that switching between 1 V and 300 mV and between 1 mV and \(300 \mu \mathrm{~V}\) and \(10 \mu \mathrm{~V}\) upon powering the unit up may result in the deflection of the meter.
2. To preserve the high sensitivity of this unit, be sure to use either the input signal cable provided or another low capacitance shielded cable. Use of single conductors or other unshielded cables or high impedance signal sources can result in noise being introduced into the measurement circuit.
3. Be sure to take care not to exceed the maximum allowable input levels:
\[
\begin{aligned}
10 \mu \mathrm{~V} \sim 300 \mu \mathrm{~V} \text { ranges: } & \mathrm{AC}: 10 \mathrm{Vrms} \\
& \mathrm{DC}: 500 \mathrm{~V} \\
1 \mathrm{mV} \sim 300 \mathrm{mV} \text { ranges: } & \mathrm{AC}: 80 \mathrm{Vrms} \\
& 500 \mathrm{~V}(\mathrm{DC}+\mathrm{ACpeak}) \\
1 \mathrm{~V} \sim 300 \mathrm{~V} \text { ranges : } \quad & 500 \mathrm{~V}(\mathrm{DC}+\text { ACpeak) }
\end{aligned}
\]

For excessively high inputs in the \(10 \mu \mathrm{~V}\) to \(300 \mu \mathrm{~V}\) ranges the input impedance drops to approximately \(100 \Omega\).
4. Please note that this unit OVERLEVEL LED lights when the input exceeds 15 dB above the fullscale reading for use with weighting filters to warn against distortion due to highly excessive signal levels. It also normally lights when switching between the 300 V and 1 V or between the 300 NV and 1 mV ranges, but this is normal and not an indication of excessive signal level.
5. The dynamic range of the units is \(40 \sim 80 \mathrm{~dB}\) making it impossible to measure the internal weighing filter's frequency response while they are installed in the unit.
6. A signal or DC voltage should never be placed between the instrument case and ground.
7. When this instrument is used in a location where the AC line has pulse noise of a level higher than the internal filter can handle, performance may be affected. Consideration should be given to providing a clean power source in such a situation.
8. Temperature coefficient is \(0.1 \% /{ }^{\circ} \mathrm{C}\) TYP. with \(10 \mu \mathrm{~V} \sim 300 \mu \mathrm{~V}\) ranges.

\section*{7. MAINTENANCE}

\section*{Removing the CASE}

Using a screwdriver, remove the two screw each on the left side, right side and top of the instrument. Open the bottom of the receptacle shaped case to remove the cover.
Removal of the four screws retaining the bottom cover will expose the shield.

\section*{Replacing the fuse (see Figure 4)}

REPLACING FUSE
When a fuse goes out, the device is no longer operable. If gone out, check for a trouble cause, remedy it, remove the cap of the fuse hoider on the rear panel using a screw driver and take it out and replace the fuse with a new one.
When replacing fuse, be sure to check the capacity of a new fuse for a specified value as follows:

AC \(100 \mathrm{~V}, 120 \mathrm{~V}: 0.5 \mathrm{~A}\)
AC \(220 \mathrm{~V}, 240 \mathrm{~V}: 0.3 \mathrm{~A}\)

CHANGEOVER OF VOLTAGE IN SWITCHING
REGULATOR LINE VOLTAGE SELEETOR
Remove the the frodor on the rear side of the device set, using a minus surew driver, adjust your preferred voltage indication with \(\downarrow\) mark and plug the holder in. For changing 100 V or 117 V to 220 V or 240 V , change the fuse of 0.5 A to that of 0.3 A .


Fig. 4

\section*{8. ADJUSTMENT}

Although this instrument is shipped in a calibrated and adjusted state, should recalibration be necessary, perform the procedures outlined below using calibrated instruments after verifying that the line voltage setting is correct.

\section*{Meter accuracy adjustment}
1. Remove the case and bottom cover.
2. Without applying power mechanically zero the meter using the zero adjustment screw.
3. Using a meter calibrator apply either a 400 Hz or 1 kHz signal to the INPUT (4) of this instrument.
4. Set the AVERAGE/PEAK switch (8) to AVERAGE and the WEIGHT switch (9) to FLAT.
5. Set the meter calibrator output to 10 mV and the meter RANGE switch (3) to 10 mV . Adjust VR2 of the Output Unit (X73-1390-00) for a fullscale deflection of 10 mV .
6. Set the meter calibrator output level to 30 mV and the meter range switch to 30 mV . Adjust VR4 on the Input Unit (X73-1380-00) (bottom side) for a

\section*{fullscale deflection.}

Next set the meter calibrator output level to 1 V and themeter range switch to the 1 V range.
Adjust VR1 of the Input Unit for a fullscale deflection.
7. For adjustment of the \(10 \mu \mathrm{~V}\) to \(300 \mu \mathrm{~V}\) ranges use a calibrated resistive attenuator to obtain an output of \(100 \mu \mathrm{~V}\). Set the meter range to \(100 \mu \mathrm{~V}\) and adjust VR2 of the input Unit for a fullscale deflection.
8. To adjust the \(10 \mu \mathrm{~V}\) range of the \(\mathrm{VT}-172\), set the calibrator output to \(10 \mu \mathrm{~V}\) and set the meter range switch to the \(10 \mu \mathrm{~V}\) position. Adjust VR201 of the Input Unit for a fullscale deflection.
9. Depress the AVERAGE/PEAK switch and leave the WEIGHT switches in the FLAT condition. As was done in step 5, adjust VR7 of the Output Unit for a fullscale deflection.
10. Remove the calibrator and connect a wideband oscillator to the INPUT. Set the oscillator frequency to 1 kHz and the meter range switch to 1 V . Adjust the oscillator output level for a fullscale deflection in this condition.
11. Shift the oscillator frequency to 100 kHz and use the TC1 on the input Unit to adjust the meter for fullscale deflection.
12. Repeat the above procedure.

\section*{AC-DC OUT adjustment}

Depress the AVERAGE/PEAK switch on the panel and leave the WEIGHT switches in the FLAT condition.
1) AC-OUT adjustment

Apply a signal so that the meter reads for fullscale. Adjust VR8 so that the AC OUT is 1 Vrms .
2) DC-OUT adjustment

Short circuit the input and adjust VR10 so that the DC OUT is OV. Apply a signal so that the meter reads for fullscale.
Adjust VR9 so that the DC OUT is 1 V . Repeat above procedure until the specified value is obtained.


Fig. 5 Input Unit Adjusti is (Bottom View)


Fig. 6 Output Unit Adjustments (Left Side View)


Fig. 7 Filter Ur. Adjustments (Right Side View)

\section*{9. APPENDIX}

\section*{Adjustment of Weighting Filter Reference Level.}

The reference level of each filter is adjusted so that this level (the 0 dB level on the weighting curve) yields the same measured value as the FLAT conditon. Use a frequency counter to accurately set the frequency of the oscillator for this adjustment.
\begin{tabular}{|l|c|c|c|}
\hline Weighting & \begin{tabular}{c} 
Filter \\
Unit \\
Control
\end{tabular} & \begin{tabular}{c} 
Oscillator \\
frequency
\end{tabular} & \begin{tabular}{c} 
Adjust \\
For:
\end{tabular} \\
\hline JIS-A & VRI & 1 kHz & \begin{tabular}{c} 
OdB \\
indication
\end{tabular} \\
\hline DIN NOISE & VR2 & 1 kHz & \begin{tabular}{c} 
OdB \\
indication
\end{tabular} \\
\hline DIN AUDIO & VR3 & 1 kHz & \begin{tabular}{c}
0 dB \\
indication
\end{tabular} \\
\hline CCIR & VR4 & 6.3 kHz & \begin{tabular}{c}
12.2 dB \\
indication
\end{tabular} \\
\hline CCIR/ARM & VR5 & 6.3 kHz & \begin{tabular}{c}
6.6 dB \\
indication
\end{tabular} \\
\hline
\end{tabular}

Table 1

With regard to CCIR recommendations and DIN 45405 standards for semi-peak detection of noise levels, the following characteristics are specified.
1. One tone burst is to be input and the measured value to be verified to be within the limits summarized below. The tone burst is to be sine wave of 5 KHz frequency. The duration times are listed in the table below.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Tone burst duration (ms)} & 1 & 2 & 5 & 10 & 20 & 50 & 100 & 200 & \(\infty\) \\
\hline \multicolumn{2}{|l|}{Measured value(\%)} & 17.0 & 26.6 & 40 & 48 & 52 & 59 & 68 & 80 & 100 \\
\hline \multirow{2}{*}{Allowable range(\%)} & Lower Simit & 13.5 & 22.4 & 34 & 41 & 44 & 50 & 58 & 68 & - \\
\hline & Upper limit & 21.4 & 31.6 & 46 & 55 & 60 & 68 & 78 & 92 & -- \\
\hline
\end{tabular}

Table 2
2. Input a tone burst signal as shown below and verify a response within the limits shown below. The tone burst frequency is 5 kHz .
\begin{tabular}{|c|l|r|r|r|}
\hline Tone burst repetition frequercy (Hz) & 2 & 10 & 100 \\
\hline Measured value (\%) & 48 & 77 & 97 \\
\hline \multirow{2}{*}{\begin{tabular}{c} 
Allowable \\
range(\%)
\end{tabular}} & Lower limit(\%) & 43 & 72 & 94 \\
\cline { 2 - 5 } & Upper limit(\%) & 53 & 82 & 100 \\
\hline
\end{tabular}

Table 3
1) Noise Measurement Filter JIS C 1502A, JIS C5551A IEC-A, IHF-A
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
Frequancy \\
\((\mathrm{Hz})\)
\end{tabular} & \begin{tabular}{c} 
Response \\
\((\mathrm{dB})\)
\end{tabular} & \begin{tabular}{c} 
Responsed \\
tolerance \\
\((\mathrm{dB})\)
\end{tabular} \\
\hline 25 & -44.6 & \(\pm 2.0\) \\
\hline 31.5 & -39.2 & \(\pm 2.0\) \\
\hline 40 & -34.5 & \(\pm 2.0\) \\
\hline 50 & -30.2 & \(\pm 2.0\) \\
\hline 63 & -26.1 & \(\pm 2.0\) \\
\hline 80 & -22.3 & \(\pm 2.0\) \\
\hline 100 & -19.1 & \(\pm 1.0\) \\
\hline 125 & -16.1 & \(\pm 1.0\) \\
\hline 160 & -13.2 & \(\pm 1.0\) \\
\hline 200 & -10.8 & \(\pm 1.0\) \\
\hline 250 & -8.6 & \(\pm 1.0\) \\
\hline 315 & -6.5 & \(\pm 1.0\) \\
\hline 400 & -4.8 & \(\pm 1.0\) \\
\hline 500 & -3.2 & \(\pm 1.0\) \\
\hline 630 & -1.9 & \(\pm 1.0\) \\
\hline 800 & -0.8 & \(\pm 1.0\) \\
\hline
\end{tabular}
2) Noise Measurement Filter DIN 45405 (NOISE)
3) Noise Measurement Filter DIN 45405 (AUDIO)
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
Frequancy \\
\((\mathrm{Hz})\)
\end{tabular} & \begin{tabular}{c} 
Response \\
\((\mathrm{dB})\)
\end{tabular} & \begin{tabular}{c} 
Responsed \\
tolerance \\
\((\mathrm{dB})\)
\end{tabular} \\
\hline\(\leqq 20\) & \(<-40\) & \\
\hline\(\leqq 31.5\) & \(<-38\) & \\
\hline 63 & -31.6 & \(\pm 1.5\) \\
\hline 100 & -26.1 & \(\pm 1.5\) \\
\hline 200 & -17.3 & \(\pm 1.5\) \\
\hline 400 & -8.8 & \(\pm 1.5\) \\
\hline 800 & -1.9 & \(\pm 1.5\) \\
\hline 1000 & 0 & \(\pm 0.5\) \\
\hline 2000 & +5.3 & \(\pm 1.5\) \\
\hline 4000 & +8.2 & \(\pm 1.5\) \\
\hline 5000 & +8.4 & \(\pm 0.5\) \\
\hline 6300 & +8.0 & \(\pm 1.5\) \\
\hline 7100 & +7.1 & \(\pm 1.5\) \\
\hline 8000 & +5.1 & \(\pm 2.0\) \\
\hline 9000 & -0.3 & \(+3 .-2\) \\
\hline 10000 & -9.7 & \(+3 .-2\) \\
\hline 16000 & \(<-21\) & \\
\hline 20000 & \(<-23\) & \\
\hline 31500 & \(<-30\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
Frequancy \\
\((\mathrm{Hz})\)
\end{tabular} & \begin{tabular}{c} 
Response \\
\((\mathrm{dB})\)
\end{tabular} & \begin{tabular}{c} 
Responsed \\
tolerance \\
\((\mathrm{dB})\)
\end{tabular} \\
\hline 4 & \(\leqq-20\) & \\
\hline 10 & \(\leqq-5\) & \\
\hline 31.5 & 0 & \(\pm 0.5\) \\
\hline 1000 & 0 & \(\pm 0.5\) \\
\hline 20000 & 0 & \(\pm 0.5\) \\
\hline 25000 & \(\leqq-3\) & \\
\hline 50000 & \(\leqq-40\) & \\
\hline
\end{tabular}

Table 6

Table 5
4) Noise Measurement Filter (CCIR standard),
(Rec. 468-2)
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
Frequancy \\
\((\mathrm{Hz})\)
\end{tabular} & \begin{tabular}{c} 
Response \\
\((\mathrm{dB})\)
\end{tabular} & \begin{tabular}{c} 
Responsed \\
tolerance \\
\((\mathrm{dB})\)
\end{tabular} \\
\hline 31.5 & -29.9 & \(\pm 2.0\) \\
\hline 63 & -23.9 & \(\pm 1.4\) \\
\hline 100 & -19.8 & \(\pm 1.0\) \\
\hline 200 & -13.8 & \(\pm 0.85\) \\
\hline 400 & -7.8 & \(\pm 0.7\) \\
\hline 800 & -1.9 & \(\pm 0.55\) \\
\hline 1000 & 0 & \(\pm 0.5\) \\
\hline 2000 & +5.6 & \(\pm 0.5\) \\
\hline 3150 & +9.0 & \(\pm 0.5\) \\
\hline 4000 & +10.5 & \(\pm 0.5\) \\
\hline 5000 & +11.7 & \(\pm 0.5\) \\
\hline 6300 & +12.2 & 0 \\
\hline 7100 & +12.0 & \(\pm 0.2\) \\
\hline 8000 & +11.4 & \(\pm 0.4\) \\
\hline 9000 & +10.1 & \(\pm 0.6\) \\
\hline
\end{tabular}
5) Noise Measurement Filter (CCIR/ARM standard)
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
Frequancy \\
\((\mathrm{Hz})\)
\end{tabular} & \begin{tabular}{c} 
Response \\
\((\mathrm{dB})\)
\end{tabular} & \begin{tabular}{c} 
Responsed \\
tolerance \\
\((\mathrm{dB})\)
\end{tabular} \\
\hline 31.5 & -35.5 & \(\pm 2.0\) \\
\hline 63 & -29.5 & \(\pm 1.4\) \\
\hline 100 & -25.4 & \(\pm 1.0\) \\
\hline 200 & -19.4 & \(\pm 0.85\) \\
\hline 400 & -13.4 & \(\pm 0.7\) \\
\hline 800 & -7.5 & \(\pm 0.55\) \\
\hline 1000 & -5.6 & \(\pm 0.5\) \\
\hline 2000 & 0 & \(\pm 0.5\) \\
\hline 3150 & +3.4 & \(\pm 0.5\) \\
\hline 4000 & +4.9 & \(\pm 0.5\) \\
\hline 5000 & +6.1 & \(\pm 0.5\) \\
\hline 6300 & +6.6 & 0 \\
\hline 7100 & +6.4 & \(\pm 0.2\) \\
\hline 8000 & +5.8 & \(\pm 0.4\) \\
\hline 9000 & +4.5 & \(\pm 0.6\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|}
\hline \begin{tabular}{c} 
Frequancy \\
\((\mathrm{Hz})\)
\end{tabular} & \begin{tabular}{c} 
Response \\
\((\mathrm{dB})\)
\end{tabular} & \begin{tabular}{c} 
Responsed \\
tolerance \\
\((\mathrm{dB})\)
\end{tabular} \\
\hline 10000 & +2.5 & \(\pm 0.8\) \\
\hline 12500 & -5.6 & \(\pm 1.2\) \\
\hline 14000 & -10.9 & \(\pm 1.4\) \\
\hline 16000 & -17.3 & \(\pm 1.65\) \\
\hline 20000 & -27.8 & \(\pm 2\) \\
\hline 31500 & -48.3 & \(\pm 2.8, ~ \infty\) \\
\hline
\end{tabular}

Table 8


\section*{A product of \\ KENWOOD CORPORATION}
17.5, 2-chome, Shibuya, Shibuyaku, Tokyo 150, Japan```

