
# OFFOSTS THE TESTS

#### Introduction

Before you start testing your turntable with this record, please check that the remaining components of your Hi-Fi system function correctly. Please refer to your instruction manual for the correct installation of your turntable and tone arm (overhang, anti-skating adjustment etc.). The left speaker system should be connected to the left amplifier channel, etc., and both your speakers should work in phase. If these connections are not correct, this will be revealed by the test signals on the recording. Furthermore, before you start using the test record, you should check that your speaker systems are optimally positioned in the room – please refer to suggestions in your loudspeaker instruction manual for speaker placement.

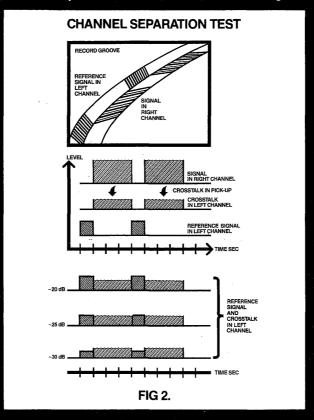
You may prefer to use a pair of high quality headphones for the evaluation, as other people and pets may not like the sound of some of the test signals.

The record is designed to be played through your system just as is done with all recordings (including the built-in RIAA equalization). You should set your volume control for a moderate signal level. As each test section contains its own run-in groove, you will have to move the tone arm manually each time you have finished one part of the cartridge evaluation.



#### 1. Channel Orientation and Phasing Test

By means of a spoken comment and a white noise test signal you will be able to determine whether your system has proper left and right channel connections and whether both channels are in phase. Errors with respect to orientation and phasing can be due to either cartridge connections or loudspeaker connections. If the left and right channels appear to be reversed, the colour coded terminal leads in the pick-up shell should be checked together with the connections between turntable and amplifier and between amplifier and loudspeaker. In the event of phasing problems, the most likely cause is a reversal of the connection of the pick-up shell leads to the cartridge terminal pins for one of the channels, or a reversal of one of the set of wires to a loudspeaker. (Fig. 1).


#### 2. Channel Separation Test

In an ideal Hi-Fi system, signals appearing in the two channels will not interact and a signal intended for one channel only will not appear in the other. The channel separation will be infinite, and there will be no crosstalk at all. In terms of channel separation, pick-up cart-ridges are much less than ideal, but correctly installed, a high quality cartridge can attain separation figures of 25 dB or more around 1 000 Hz.

The channel separation track of this record enables you to test crosstalk in both channels, independently. By following the spoken instructions on the record, and by comparing with Fig. 2, you can easily determine whether the channel separation of your cartridge is better or worse than 20 dB, 25 dB or 30 dB, respectively. The signal used has a bandwidth of 316 Hz centred at 1,000 Hz.

In order to turn off one channel so as to hear crosstalk, the balance control can be rotated to one or the other of its extreme positions. Follow the spoken instruction by switching off your left channel first. If this does not give a complete shut-off of the signal, it is also possible to remove the connecting cable from the turntable on one channel in order to hear crosstalk. When removing the cable, it is recommended that the volume control be turned down and restored to normal for the listening test.

The channel separation figures of a high quality cartridge should be at least 25 dB in both channels. This means that you should hear the short reference signal

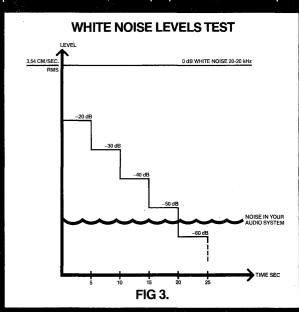


louder than the crosstalk – the long signal – when listening to the –25 dB test. If this is not the case, or the separation figures differ widely between the channels, the reason could be that the stylus axis is not perfectly vertical in relation to the record as seen looking at the pick-up cartridge from the front. Please refer to the instruction manual for your turntable and tone arm concerning adjustment of the cartridge mounting.

#### 3. White Noise Levels Test (Signal-to-Noise Ratio)

On this track, white noise with a bandwidth of 20 kHz has been recorded without RIAA correction at decreasing levels of –20 dB, –30 dB, –40 dB, –50 dB, –60 dB and more than –60 dB, with reference to a groove modulation of 3,54 cm/sec. RMS. The duration of each level is 5 seconds.

When you play back this track, you should be able to hear the difference between each of the six noise levels. If you cannot tell the difference between the -50 dB level and the -60 dB level for instance (Fig. 3), the signal-to-noise ratio of your entire Hi-Fi chain will be


more than 50 dB and less than 60 dB. The signal-tonoise ratio of a high quality audio system should be at least 60 dB. However, some hiss on the recording may prevent hearing the difference between 50 dB and 60 dB. This is not a fault of your system, but is a limitation of the record manufacturing process.

#### 4. Silent Groove Test

The silent groove on this record has been cut with a special cutterhead, the moving system of which has been locked. This technique ensures the lowest possible noise level, since it eliminates the effects of residual noise from the cutting amplifier and vibrations from the particles of the lacquer master record.

During the playback of the silent groove at your normal listening level, you should hear almost nothing if all conditions are ideal. In practice, however, three types of noise can be present, individually or combined.

**Hum** can be induced into the systems, typically by power transformers and mains cables. It is a constant, deep bass note of 50 (60) Hz and possibly multiples of the mains frequency. Normally, it will not disappear when you raise the cartridge from the record. The cartridge itself can pick up hum from the turntable motor or power transformer, but step-up transformers and pre-

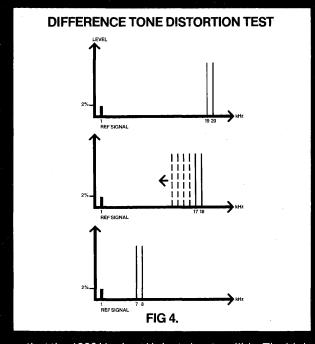


preamplifiers for moving coil cartridges can also be sensitive to mains induced hum.

**Rumble** is a different type of low frequency noise, which typically appears in idler wheel drive, and, to a less degree, in belt drive turntables. Rumble will disappear when the cartridge is raised from the record. It can easily be distinguished from hum, because rumble in most cases has an inconstant "bumping" sound.

**Hiss** is the high frequency equivalent of hum and can originate from a worn stylus or record, but the most frequent causes of hiss are less than ideal phono equalizers and pre-preamplifiers, and some hiss is inherent in the recording process itself.

#### 5. Difference Tone Distortion Test


Recent studies have shown that the human ear is very sensitive to difference tone distortion. Difference tones can appear as by-products, when two or more pure tones are played back at the same time and there is some non-linearity in the system. While the basic tones may be outside the hearing range of most people, such as 20,000 Hz and 19,000 Hz, their unwanted difference tone, 1,000 Hz in this example, will be clearly audible to anybody if it appears. See fig. 4.

This section of the record contains seven different two-tone test signals, covering the frequency range from 20,000 Hz to 7,000 Hz. The recording level is 5 cm/sec. RMS. For comparison, a 1,000 Hz reference tone has been recorded, which corresponds to a difference tone distortion level of 2 per cent.

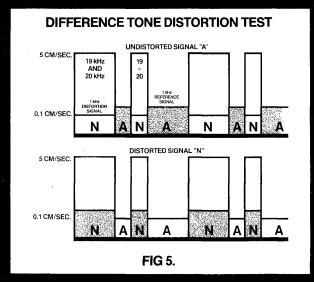
The reference signal and the two tones, which produce the 1,000 Hz difference tone, have been recorded in such a way that the reference signal forms the Morse sign 'A' (dot-dash), while the difference distortion signal fills in the space before the reference signal and forms the Morse sign 'N' (dash-dot). If the difference tone distortion is higher than 2 per cent, the "N" sign will be dominant, and if it is lower than 2 per cent, the "A' sign will be stronger.

#### "A" = All right "N" = Not good

The application of this test requires some careful judgment. The "A" signal appears at 1,000 Hz. The "N" signal appears at various high frequencies ranging down to 7 kHz. These high frequencies can be heard, particularly the lower ones. For optimal evaluation, it is recommended that the volume control be turned down



so that the 1000 Hz signal is just about audible. The high frequency "N" signal does not represent difference tone distortion. However, if the "N" is heard at 1000 Hz, this represents distortion. Therefore, the listener must refer what he hears to the 1000 Hz reference signal both for level and for pitch. If the "N" signal sounds louder than the 'A' signal and is of the same 1000 Hz pitch, then the difference tone distortion exceeds 2%. (Fig. 5). The difference tone distortion level depends upon the tip radius of the stylus, the condition of the stylus, and the vertical tracking angle and tracking force of the cartridge. Furthermore, the highest difference tones are subject to record wear which will also increase the level of distortion. If the record is played with a worn stylus or with excessive tracking force, wear will cause permanent deterioration of high frequency signals, and the "N" tone will predominate regardless of the fact that playing conditions are correct. Finally, it should be noted that some phono equalizers may generate some difference tone distortion, which consequently cannot be referred to the cartridge.


#### 6. and 7. Tracking Ability Test

#### 315 Hz lateral modulation

This track contains a 315 Hz signal, recorded at increasing peak amplitudes of 40, 50, 60, 70 and 80 micrometres (accuracy  $\pm 2$  micrometres). In order to cope with commercially available records, your cartridge should be able to track all these levels without audible distortion. Inability to track can be heard as a departure from a pure tone or a sputtering and intermittent tone. If this is heard, the balance control can be rotated to determine if it is one or both channels. In case of differing tracking ability in the left and right channels it is probably necessary to readjust the anti-skating correction of the tone arm. If both channels fail to track properly, then vertical tracking force should be increased until no further improvement of tracking force can be obtained. (Fig. 6).

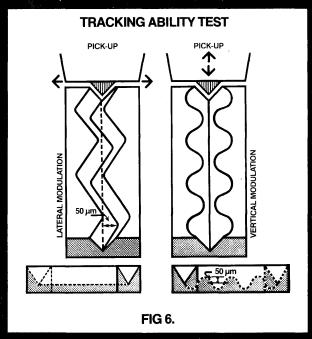
#### 315 Hz vertical modulation

This track also contains a 315 Hz tone, but it has been vertically modulated at levels of 20, 30, 40 and 50 micrometres. Otherwise, the test signals do not differ from the laterally modulated track described above, and they should be applied in the same way. (Fig. 6).



#### 8. and 9. Tone arm Resonance Test

Any combination of a tone arm and a cartridge will have a resonance frequency which will typically appear in the subsonic range between 4 Hz and 15 Hz. Although a resonance frequency below 20 Hz is inaudible in itself, it is very important for other reasons that it does not occur in a range that can influence the reproduction of records. Below 5 Hz, all records contain warps and other irregularities. If the tone arm resonance frequency is much lower than 8 Hz, the record warps can excite resonance, and the audible results can be increased rumble, reduced tracking ability and a marked sensitivity towards acoustical feedback. Therefore, the resonance frequency should be higher than 8 Hz (preferably in the 10-12 Hz range), but not so high as to appear in the audio spectrum above 20 Hz. The tone arm resonance test section of this record is divided in two tracks, one to determine the lateral


divided in two tracks, one to determine the lateral resonance frequency and one to determine the vertical resonance frequency. The test signals in both tracks cover the frequency range from 25 Hz to 4 Hz and have been cut with a constant amplitude of 17 micrometres. In order to provide a clear identification of the resonance frequencies, a tone complex consisting of 2,349 Hz and 2,960 Hz signals has been superimposed on the subsonic test signal. The two high frequencies

have been placed in a range where the human ear is particularly sensitive to frequency variations or wow. This means that when the tone arm resonance is excited by one of the subsonic frequencies, the high frequency tone complex will become frequency modulated, and its pitch will change rapidly up and down, giving a warble effect to the signal.

If the tone arm and cartridge combination is not well-damped, you will probably be able to determine the resonance frequency by watching the pick-up shell. Around the resonance frequency, it may start vibrating visibly, and you should be able to see this effect as well as hear it.

As mentioned above, the tone arm resonance frequency of your tone arm and cartridge should, ideally, occur in the 10-12 Hz range, and its amplitude should be well-damped. This latter point implies that the frequency modulation of the high frequency tone complex should be barely audible around the resonance frequency, and pick-up shell vibrations should be almost invisible.

If the tone arm resonance frequency is too low, a common phenomenon, three different solutions are



possible. The pick-up shell can be changed to a lighter type. The tone arm can be changed to a low mass model, or the cartridge itself can be changed to a type with lower compliance.

#### 10. A long and winding road

The technical part of the Ortofon Demonstration Record contains one of the most demanding evaluation programmes for Hi-Fi cartridges that has so far been designed for non-professional purposes. Unless your phono cartridge belongs to the very small group of true state-of-the-art cartridges and is well matched to a high quality tone arm and turntable, it is not very likely that it will respond satisfactorily to all test signals on the record

A cartridge of the highest technical and musical standards will make the most out of the direct cut concert programme on the second side of this record. You can then experience the highest degree of musical realism in your home. However, if you are not completely satisfied with the performance of your present audio equipment, the first side of the record may help you in pin-pointing one or more possible sources of distortion and sound colouration.

#### **Additional Technical Information**

#### 1. Channel Orientation and Phasing Test Test signal: White noise

Pre-emphasis:

RIAA

#### 2. Channel Separation Test

Test signal:

316 Hz band noise, centre

frequency, 1,000 Hz

Modulation level: Reference signal: 3.54 cm/sec RMS each channel 3.54 cm/sec RMS -20, -25 and

-30 dB

#### 3. Signal-to-Noise Ratio Test

Test signal:

White noise 20-20 kHz

Reference level: Modulation:

3.54 cm/sec RMS each channel

Lateral Pre-emphasis: Linear

#### 4. Silent Groove Test

No comments

#### 5. Difference Tone Distortion Test

Test signals:

20/19, 18/17, 16/15, 14/13,

Modulation level:

12/11, 10/9, 8/7 kHz. 5 cm/sec RMS Vertical

Pre-emphasis:

Linear

Reference signal frequency: 1 kHz Reference signal level:

2%~ 0.1 cm/sec RMS Vertical

Two-tone generator:

Brüel & Kjær 1902 Distortion Measurement Control Unit

#### 6. Tracking Ability Test

Test signal:

315 Hz

Modulation levels:

Lateral:

40, 50, 60, 70, 80 µm peak 20, 30, 40, 50 µm peak

Vertical: Level accuracy:

 $\pm 2\,\mu m$ 

#### 7. Tone Arm Resonance Test

Test signals:

25-4 Hz

Modulation levels:

Lateral:

17 µm 18 µm

Superimposed frequencies: 2,349/2,960 Hz

#### **ORTOFON MANUFACTURING A/S**

Mosedalvej 11 B

DK-2500 Copenhagen - Valby

Denmark.

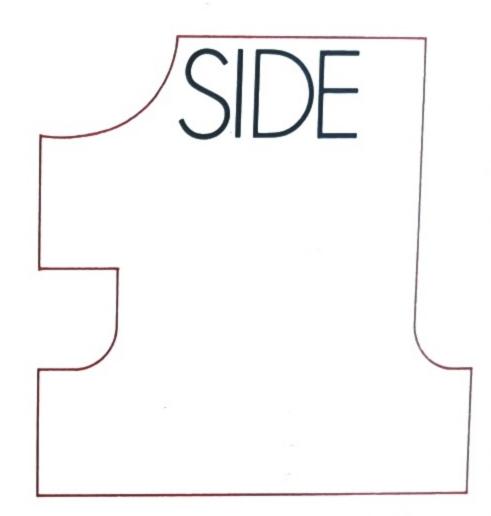




## The Ortofon Story

For over 60 years Ortofon has been closely connected with advanced developments on the sound scene. Our involvement began when the founders of our company, two Danish engineers, Axel Petersen and Arnold Poulsen, invented the first sound film projection system which they exported to America with the patent rights.

The next major Ortofon project came to fruition at the end of the '30's. This was the design and production of cutter-heads to cut master records to be used in professional production of phonograph records. Our experience in this field was further utilized in the mid '40's to develop the world's first moving coil cartridge built on exactly the same principle as the cutterhead, but in reverse.


After patenting our moving coil technique in 1948, Ortofon became world leader in this classic cartridge design which is still rated the best for optimum record playback. Later, the company introduced a range of top quality magnetic cartridges and today offers a wide and varied cartridge range with high quality cartridges of both moving coil and magnetic types as well as cutterheads and the professional equipment for cutting records.

This record brings the Ortofon story right up to date. What could be more natural than a direct-cut musical demonstration and test record from the people who probably know most about record cutting and reproducing equipment? Play it for yourself and assess whether or not your own personal cartridge meets our high criteria.

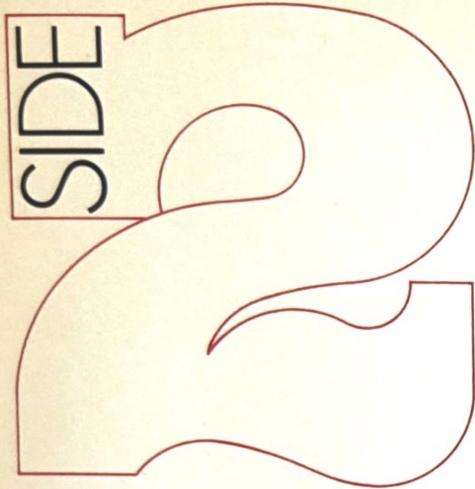
## ORTOFON PICK-UP TEST RECORD DIRECT CUT

SIDE 1 The Tests

SIDE 2
Musical Demonstration
of the Works of
H.C.Lumbye, played by
the Tivoli Symphony
Orchestra.



#### The Tests


While the majority of test records are produced for use by laboratories possessing sophisticated measuring equipment, the first side of the Ortofon Demonstration record contains special test signals by means of which you can analyse the performance of your pick-up cartridge as well as its interaction with your tone arm and turntable. The only test instruments you need are your own ears.

This side of the record consists of nine tracks, which have been individually cut. This means that each section contains its own run-in groove. Therefore, you will have to move the tone arm manually each time you have finished one part of the cartridge evaluation.

Track No. 1: Channel orientation and phasing

- 2: Channel separation
- 3: White noise levels
- 4: Silent groove
- 5: Difference tone
- 6: Tracking ability, lateral
- 7: Tracking ability, vertical
- 8: Tone arm resonance, lateral 9: Tone arm resonance, vertical

Before you play this side, please read the enclosed leaflet which gives detailed information about the tests.



## 'The Music of Tivoli'

Since Copenhagen's Tivoli Gardens were first opened over a century and a quarter ago, the sound of its own musicians has enchanted millions of visitors from all over the world. Music is as much a part of the traditional Tivoli atmosphere as its cheerful restaurants, firework displays, and carousels. From the beginning it had its concert hall and a 33 piece orchestra - amenities which few similar places of entertainment could equal.

The conductor in those days was Hans Christian Lumbye, an ex-regimental bandsman who had become a prolific and talented composer of dance music. Referred to with affection as "Scandinavia's Strauss", he had already achieved fame on concert tours all over Europe. Lumbye's lilting melodies remain immensely popular in Denmark. You can hear them still on summer evenings in Tivoli.

On this record we present Lumbye wearing all his musical hats - as regimental bandsman, writer of evergreen tunes and composer for the Tivoli Theatre Ballet. Probably his most famous composition, the "Champagne Gallop", was commissioned to celebrate Tivoli's second anniversary.

Through 31 summers Hans Christian Lumbye continued to direct the Tivoli Orchestra, annually gaining thousands of new 'fans' who applauded his strict policy of playing only popular music. He died in 1874, leaving two sons - one born the year Tivoli was opened - to uphold his musical tradition.

Since then, the 'Tivoli Music' which Lumbye created and nurtured has widened in scope to include more serious works. But the accent is still mainly light-hearted and the appeal is for everyone. Lumbye's original 'Concert Band' has developed into a distinguished Symphony Orchestra which, under its present Musical Director, Eifred Eckart-Hansen, gives regular concerts throughout the season featuring some of the world's greatest instrumentalists and singers.

Tivoli has had several concert halls in its long and colouful life, each one larger and more sophisticated than the last. The latest, a brilliantly conceived modern building seating nearly 2000, was opened in 1956. Renowned for the excellence of its acoustics, it provides an ideal setting for your introduction to 'the Music of Tivoli'.

This direct cut of Lumbye's music - the first direct cut in Denmark to appear for two decades - has been made with the enthusiastic co-operation of, among others:



Gabold, Producer with Danish Radio.

H. van Qualen, Disc Cutter Operator, EMI.

F. Nygaard, Technical Manager, Ortofon Professional

N. Bornhøj, Director, Ortofon Manufacturing A/S.

### The 'Direct Cut' Revival

The technique used for this recording – direct 'on the spot' cutting in lacquer is not new. It is, in fact, a return to the system which was used regularly up to about 25 years ago prior to the use of tape recordings. Since tape technique became available, tape technology has made it possible for engineers to make tapes of recordings, using several repeat performances and editing the whole into a high quality production.


Direct cutting is a far more expensive recording method. The complete record must be cut without breaks. Any technical or musical error during the cutting process means that everything must start again from the beginning. In addition, the number of records that can be pressed is limited if the quality level of the pressings is to stay high. If tape is used, many lacquer "masters" can be cut, and there is no limit to the number of pressings which can be made.

In spite of these drawbacks, direct cutting is regaining much of its lost ground, mainly because this technique bypasses one of the "weak links" in the recording chain (the tape recorder) and results in a higher level of quality.

## How this recording was made

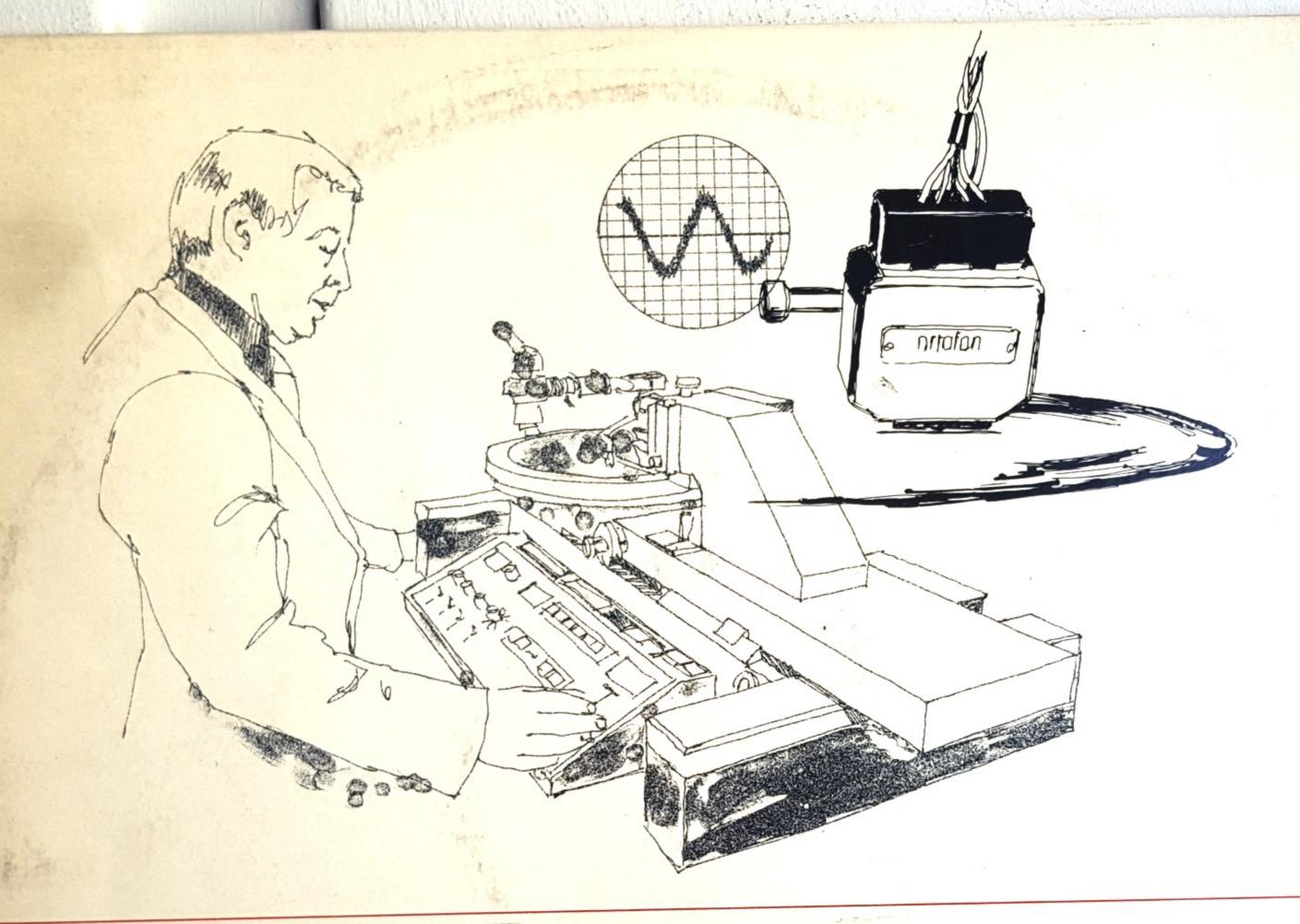
To obtain optimum frequency response we chose Brüel & Kjær condenser measuring microphones of quarter-inch 4133 type with 2619 pre-preamplifier. We selected two of these microphones with a completely smooth measured frequency response from 2.5 Hz to 40,000 Hz. Two microphones can preserve accurate reproduction of the localization of the various instruments and performances.

As condenser microphones are omni-directional in the audible range, it is necessary to position them on a time delay basis, at the same height, with a space of 20-50 cm between them. The delay in time between the arrival of the




The balance between the orchestral instruments was regulated by raising or lowering the microphones, higher positioning giving more emphasis on wind and lower more on strings. Tests showed that the best result was achieved with the microphones 4.25 m above floor level. Even in this position we could not get enough power from the strings to match the wind, so we had to move the former instruments further towards the front of the stage, thus increasing the distance between strings and wind. We also asked the conductor to request his string section to play more quietly in the louder passages.

Our next problem was to regulate balance between the direct sound from the orchestra and reverberations from the hall. This is controlled by placing the microphones closer to, or farther away from, the orchestra. Tivoli's Concert Hall, which was used for this concert, is considered to have a very beautiful and smooth sound potential, and we felt that its reverberation time of 2.25 secs in the 500-1000 Hz range (ref: Baranek: Music, Acoustics and Architecture) was very acceptable in recording this type of music.


To set the gain of the microphone amplifiers we used Brüel & Kjær sound pressure meters to measure the sound pressure produced by the orchestra at the point where the microphones stood. This proved to be 103 dBL (A) and 111 dBL peak. Optimum matching was achieved by adjusting the gain to obtain the correct output at this sound pressure

Transformers are not used in the Ortofon GO 741 cutting amplifiers, both of which have 500 W peak power. The Cutterhead was the DSS 731 with special cutting sapphire. Both are designed for CD-4 cutting. This equipment makes it possible to cut signals from below to above the audible range. Within ± 1/2 dB, the range is from 10 Hz to 26,000 Hz. As the microphones are sensitive from DC to 40,000 Hz, they tend to pick up noise and other signals below 15 Hz. This can cause tone arm and loudspeaker problems during playback, and a filter has been fitted to cut off signals below 15 Hz with a 6 dB/octave slope.

The complete system is thus able to reproduce more than the entire audible range - an ideal situation. At the same time, account has been taken of subsonic signals that can degrade playback of the record.







## ortofon

This is a direct-cut record with, on one side, a selection of music by the popular Danish composer, Hans Christian Lumbye, played by the Tivoli Symphony Orchestra. The recording, made in the Concert Hall of Copenhagen's world famous Tivoli Gardens, is of the highest quality to enable you to assess the performance of your pick up and enjoy concert hall realism in your own home.

Adventure in Sound

The reverse side contains a series of test signals covering tone arm resonance, tracking ability, channel separation, intermodulation, phasing, channel orientation and broadband noise. By listening to them you can make your pick up assessment purely by ear, without recourse to measuring instruments.

We hope you enjoy your adventure in sound.

PICK UP TEST RECORD



Direct cut No. 0001

ortofon

STEREO 331/3

The Tivoli Symphony conducted by Eifred Eckart-Hanse.

1. Kong Georg d. 1's Honnørmarch (Homage March)
2. Pepita Polka
3. Finale Galop fra "Livjægerne på Amager" (Ballet)
4. Champagne Galop

Produced by Ortofon

Produced by Ortofon

Produced by Ortofon

9 of this record prohibited.