LINEAR INTEGRATED CIRCUITS

PRELIMINARY DATA

DUAL HIGH PERFORMANCE OPERATIONAL AMPLIFIER

- SINGLE OR SPLIT SUPPLY OPERATION
- LOW POWER CONSUMPTION
- HIGH UNITY GAIN BANDWIDTH
- NO CROSSOVER DISTORTION
- NO POP NOISE
- SHORT CIRCUIT PROTECTION
- HIGH CHANNEL SEPARATION

The LS4558N is a high performace dual operational amplifier with frequency and phase compensation built into the chip. The internal phase compensation allows stable operation as voltage follower in spite of its high gain-bandwidth

ABSOLUTE MAXIMUM RATINGS

products. The circuit presents very stable electrical characteristics over the entire supply voltage range and the specially designed input stage allow the LS4558N to be used in **low noise audio signal processing application**. The optimized class AB output stage completely eliminates crossover, distortion, under any load conditions, has large source and sink capacity and is short circuit protected.

V _s V ₁	Supply voltage		± 18 ± V.	v
V,	Differential input voltage		± (V, - 1)	v
P _{tot}	Power dissipation at $T_{amb} = 70^{\circ}C$	Minidip	665	mW
		Micropackage	400	mW
Top	Operating temperature	·	0 to 70	°C
T	Junction temperature		150	°C
T _{stg}	Storage temperature		-55 to 150	°C

ORDERING NUMBER: LS 4558 NB (Minidip) LS 4558 NM (Micropackage)

TYPICAL APPLICATIONS:

Balanced input audio preamplifier

DC coupled low-pass active filter $(f = 1 \text{KHz}, G_v = 6 \text{dB})$

CONNECTION DIAGRAM

(top view)

SCHEMATIC DIAGRAM (one section)

THERMAL DATA	Minidip	SO-8
R _{th j-amb} Thermal resistance junction-ambient	120 °C/W	200°C/W

ELECTRICAL CHARACTERISTICS ($V_s = \pm 15V$, $T_{amb} = 25^{\circ}C$, unless otherwise specified)

LS4558N

	Parameter	Test conditions	Min.	Тур.	Max.	Unit
۱ _s	Supply current (*)			1	2	mA
1 _b	Input bias current			50	500	nA
		T _{min} < T _{op} < T _{max}			800	nA
Ri	Input resistance	f = 1 KHz	0.3	1		MΩ
Vos	Input offset voltage	R _g ≤ 10 KΩ		0.5	5	mV
		$R_g \le 10 K\Omega$ $T_{min} < T_{op} < T_{max}$			7.5	mV
l _{os}	Input offset current			20	200	nA
		T _{min} < T _{op} < T _{max}			500	nA
1 _{sc}	Output short circuit current			23		mA
Gv	Large signal open loop voltage gain	R _L = 2 KΩ	86	100		dB
В	Gain-bandwidth product	f = 20 KHz	2	3		MHz
e _N	Total input noise voltage	f = 1 KHz R _g = 50Ω R _g = 1 KΩ R _g = 10 KΩ		8 10 18	15	nV √Hz
e _N	Popcorn noise	B = 1 Hz to 1 KHz Rg= 10 KΩ t = 10 sec		-	10	μV peak
d	Distortion	$ \begin{array}{ll} G_v = 20 \text{ dB} & \text{R}_L = 2 \text{ K}\Omega \\ V_o = 2 \text{ Vpp} & \text{f} = 1 \text{ KHz} \end{array} $		0.03		%
Vo	Output voltage swing	R _L = 2 KΩ		± 13		V
Vo	Large signal voltage swing	R _L = 10 KΩ f = 10 KHz		28		Vpp
Transient	response Rise time	$V_i = 20 \text{ mV}$ $R_L = 2 \text{ K}\Omega$		0.13		μS
	Overshoot	C _L = 100 pF		5		%
SR	Slew rate	unity gain R _L = 2 KΩ	0.8	1.5		V/µs
CMR	Common mode rejection	V_i = 10V T _{min} < T _{op} < T _{max}	70	90		dB
SVR	Supply voltage rejection	V_i = 1V f = 100 Hz T _{min} < T _{óp} < T _{max}	80	100		dB
CS	Channel separation	$f = 10 \text{ KHz}$ $R_g = 1 \text{ K}\Omega$		105		dB

(*) Both amplifiers.

Fig. 2 – Open loop gain vs. ambient temperature

 $V_{S} = \pm 15V$

RL=2KA

100 Tamb(°C)

0

50

Fig. 6 - Total input noise vs. frequency

Fig. 7 - Channel separation

Fig. 8 - Transient response

APPLICATION INFORMATION

Fig. 10 - Mike/Line preamplifier for audio mixers (0 dB to 60 dB continuously variable gain)

Fig. 12 - Very Low-Noise mike preamplifier ($G_v = 40 \text{ dB}$)

I S4558N

Fig. 13 - Balanced input audio preamplifier

APPLICATION INFORMATION (continued)

Fig. 14 - 20 Hz to 200 Hz variable High-pass filter ($G_v = 3 \text{ dB}$)

Fig. 15 - Frequency response

Fig. 16 - DC coupled low-pass active filter (f = 1KHz, G_v = 6 dB)

Fig. 17 - Switchable HP-LP audio filter

Fig. 18 - Subsonic or rumble filter ($G_v = 0 \text{ dB}$)

Fig. 19 - High-cut filter ($G_v = 0 dB$)

f _c (Hz)	C (μF)		
15	0.68		
22	0.47		
30	0.33		
55	0.22		
100	0.1		

f _c (KHz)	C1 (nF)	C2 (nF)
3	3.9	6.8
5	2.2	4.7
10	1.2	2.2
15	0.68	1.5

APPLICATION INFORMATION (continued)

Fig. 20 - Fifth order 3.4 KHz low-pass Butterworth filter

1st order

2ndorder

2ndorder

LS4558N

For $f_c = 3.4$ KHz and $R_i = R1 = R2 = R3 = R4 = 10$ K Ω , we obtain:

$C1 = 1.354 \cdot \frac{1}{R}$	$\frac{1}{2\pi f_c}$	= 6.33 nF
$C1 = 0.421 \cdot \frac{1}{R}$	$\frac{1}{2\pi f_c}$	= 1.97 nF
$C2 = 1.753 \cdot \frac{1}{R}$	$\frac{1}{2\pi f_c}$	= 8.20 nF

$C3 = 0.309 \cdot$	$\frac{1}{R} \cdot \frac{1}{2\pi f_c}$	=	1.45 nF
C4 = 3.325 ·	$\frac{1}{R} \cdot \frac{1}{2\pi f_c}$	=	15.14 nF

The attenuation of the filter is 30 dB at 6.8 KHz and better than 60 dB at 15 KHz.

Fig. 21 - Six-pole 355 Hz low-pass filter (Chebychev type)

This is a 6- pole Chebychev type with \pm 0.25 dB ripple in the passband. A decoupling stage is used to avoid the influence of the input impedance on the filter's characteristics. The attenuation is about 55 dB at 710 Hz and reaches 80 dB at 1065 Hz. The in band attenuation is limited in practice to the \pm 0.25 dB ripple and does not exceed 0.5 dB at 0.9 fc.

MECHANICAL DATA (Dimensions in mm)

