

TDA7513

SINGLE-CHIP FM/AM TUNER WITH STEREO DECODER AND AUDIO PROCESSOR

TARGET SPECIFICATION

- AM/FM TUNER FOR CAR-RADIO
- INTEGRATED TUNING PLL
- VARIABLE-BANDWITH FM IF FILTER (ISS)
- FULLY INTEGRATED FM STEREO DECODER
- FULLY INTEGRATED FM NOISE BLANKER
- HIGHLY INTEGRATED AUDIO PROCESSOR

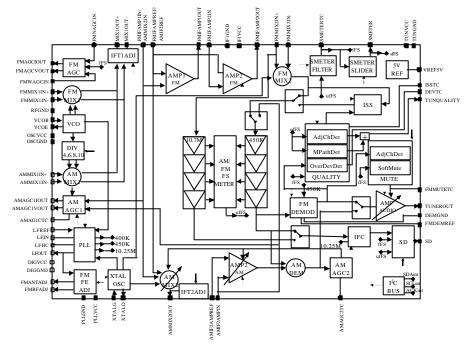
DESCRIPTION

The TDA7513 is the first device for car-radio applications that combines full RF front-end functions with audio-processing capabilities.

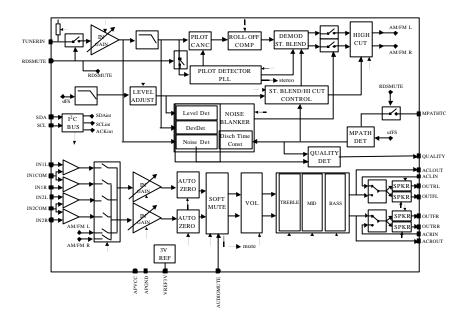
As far as FM and AM functions are concerned, the TDA7513 features front-end processing, including the digital tuning PLL, IF processing with demodulation and variable-bandwidth IF filtering (ISS), stop station and quality detection functions, FM stereo decoding by means of a fullyintegrated, adjustment-free dedicated PLL and, finally, FM noise blanking. The FM stereo decoder and noise blanker functions are realized entirely without external components.

The audio processor section comprises input selectors for two quasi-differential external sources, volume control, tone control (bass, mid and treble), balance and fading control to drive four output channels. A soft mute function and an RDS mute function are included to handle source change as well as RDS AF search without abrupt changes in the audio level.

Most of the parameters in the front-end section are l²Cbus -driven and therefore under the control of the car-radio maker. The l²Cbus allows furthermore the user to realize the full electric alignment of all the external coils, therefore removing the need for hand-made or mechanical adjustments.



TQFP80


1.0 BLOCK DIAGRAM

1.1 TUNER SECTION

51

1.2 STEREO DECODER / AUDIO PROCESSOR SECTION

2.0 PIN LIST

#	PIN NAME	PIN FUNCTION
1	VREF5V	5V reference
2	TUNGND	tuner general ground
3	AMMIX1IN1	am mix1 input
4	AMMIX1IN2	am mix1 input
5	AMAGC11C	am agc1 filter capacitor
6	AMAGC1IOUI	am agc1 current output
7	AMAGC1VOUT	am agc1 voltage output
8	FMMIX1IN1	fm mix1 input
9	RFGND	rf ground
10	FMMIX1IN2	fm mix1 input
11	FMAGCIOUT	fm agc current output
12	FMWAGCIN	fm agc RF input
	FMAGCVOUT	fm agc voltage output
14	FMANTADJ	fm antenna filter adjustment
	FMRFANDJ	fm rf filter adjustment
-	OSCGND	vco ground
	VCOE	am/fm vco emitter
	VCOB	am/fm vco base
19	OSCVCC	vco supply (8V)
	LFOUT	PLL loop filter output
	LFREF	PLL loop filter reference
	LFIN	PLL loop filter input
	LFHC	PLL loop filter high-current input
-	PLLVCC	PLL back-end supply
	PLLGND	PLL back-end ground
	XTALG	ref osc gate
	XTALD	ref osc drain
	DIGVCC	digital dirty supply (8V)
_	DIGGND	digital ground
	TUNQUALITY	tuner combined output of multipath and adjacent
00		channel detectors
31	ISSTC	ISS time constant
	DEVTC	deviation detector time constant
	VREF3V	3V reference
	APGND	audio processor/stereo decoder ground
	APVCC	audio processor/stereo decoder supply (8V)
	OUTRR	audio out
	OUTRL	audio out
	OUTFR	audio out
	OUTFL	audio out
	ACRIN	ac coupling right input
	ACROUT	ac coupling right output
	ACLIN	ac coupling left input
	ACLOUT	ac coupling left output
	IN2L	audio in2 left
	IN2COM	audio in2 common
	IN2R	audio in2 right
-	IN1R	audio in1 right
	IN1COM	audio in1 common
	IN1L	audio in1 left
	TUNERIN	am audio/fm mpx input
	TUNEROUT	am audio/fm mpx output
Ű,		

# PIN NAME	PIN FUNCTION
52 FMMUTETC	tm muting time constant capacitor
53 SDA	I2C bus data
54 SCL	I2C bus clock
55 SD	am/fm station detector output
56 SMETER	am/fm smeter output
57 QUALITY	quality output
58 AUDIOMUTE	audio mute control
59 RDSMUTE	rds mute control
60 MULTIPATHTC	multipath detector time constant
61 FMDEMREF	fm demodulator reference capacitor
62 DEMGND	fm demodulator ground
63 SMETERTC	am/fm smeter filtering capacitor
64 AMIF2AMPREF	am if2 amp feedback capacitor
65 AMIF2AMPIN	am if2 amp input
66 AMAGC2TC	am agc2 filter capacitor
67 AMMIX2OUT	am mix2 single-ended output
68 FMMIX2IN2	fm mix2 input
69 FMMIX2IN1	fm mix2 input
70 FMIFAMP2OUT	fm if1 amp2 output
71 FMIFAMP2IN	fm if1 amp2 input
72 TUNVCC	tuner general supply (8V)
73 FMIFAMPREF	fm if1 amps reference capacitor
74 FMIFAMP1OUT	fm if1 amp1 output
75 FMIFAMP1IN	fm if1 amp1 input
76 FMNAGCIN	fm agc IF input
77 IFGND	if1 ground
78 MIX10UT2	am/fm mix1 output
79 MIX1OUT1	am/fm mix1 output
80 IFVCC	if1 supply (8V)

3.0 ELECTRICAL PARAMETERS

3.1 FM (Vcc = 8V; Tamb =25°C; Vsg = 60dBu; fc = 98.1MHz; fdev = 40kHz; fmod = 1kHz unless otherwise specified).

Symbol	Pa	rameter	Test Condition	Min	Тур	Max	Unit
US	Useable sensitivity		SNR = 40dB		0		dBu
SNR	Signal to Noi	se ratio			66		dB
LS	Limiting Sensitivity		Soft Mute OFF; @ ∆Vout = - 3dB		-4		dBu
THD	Total Harmon	nic Distortion	fdev = 40kHz		0.1	0.3	%
			fdev = 75kHz		0.15	0.5	%
Vout	Audio output level				375		mVrms
ISN	Interstation r	noise	∆Vout @ RF OFF; Soft Mute OFF		-13		dB
IFCS	IF Counter se	ensitivity			2	10	dBu
lcc	DC current	OSCVcc			5.7		mA
		PLLVcc			1.9		mA
		DIGVcc			9.8		mA
		TUN/cc			50		mA
		IF1Vcc			13.4		mA
		APVcc			27.3	1	mA

General (audioprocessor all flat and stereo decoder input gain = 4dB)

Mixer1

Symbol	Para	meter	Test Condition	Min	Тур	Max	Unit
Gv	conversion gain		from RFT secondary to IFT1 secondary loaded with 330Ω		9		dB
IIP3	3 rd order interce	ept point	referred to RFT secondary				dBu
CIFT1	IFT1	min	Between MIXOUT+ and		0		pF
	adjustment	max	MIXOUT-		8.25		pF
	capacitor	step	1		0.55		pF
Rin	input resistance	(single ended)	FMMIX1IN+ and FMMIX1IN- w.r.t. gnd		10		Ω

Front-end Adjustment (VRFadj and VANTadj referred to VLFOUT)

Vantadj	min		-40	%
	max		40	%
	step		1.29	%
VRFadj	min		-40	%
	max		40	%
	step		1.29	%

AGC (wide AGC input connected to RFT primary through 10pF and 1K\Omega)

WAGCsp	Wide AGC starti	ng point	VRFTprimary @ I(FMAGCOUT) = 5uA	84	dBu
WAGCRin	FMWAGCIN inp	ut resistance		125	ohm
NAGCsp	Narrow AGC sta (max sensitivity)		VRFTprimary @ I(FMAGCOUT) = 5uA; Keyed AGC OFF	95	dBu
KNAGCsp	Keyed narrow AGC starting point (min sensitivity)		VRFTprimary @ I(FMAGCOUT) = 5uA; Keyed AGC ON; V(SMETERTO) <0.9V	109	dBu
NAGCRin	FMNAGCIN inpu	ut resistance		10	Kohm
KAGCTH	Smeter for	minimum	V(SMETERTC) @ narrow	0.9	V
high	Keyed narrow AGC maximum sensitivity	programming maximum programming	AGC starting point = NAGCsp	2.5	V

51

KAGCTH low	Smeter for Keyed narrow AGC minimum sensitivity	minimum programming maximum programming	V(SMETERTC) @ narrow AGC starting point = KNAGCsp		1.6 3.2		V
lout	min		AGC OFF			0.1	uA
	max		AGC ON	8			mA
Vout	min		AGC ON		0.1	0.5	V
	max		AGC OFF	Vcc- 0.5			V
AGCVRo ut	FMAGCVOUT of resistance	utput			100		KΩ

IF Amplifier 1 (Input at FMIFAMP1IN, fc = 10.7MHz, no mod) (Output at FMIFAMP1OUT loaded with 330 Ω) (antenna level = FMIFAMP1IN - 31dB)

G	Gain		18	dB
IIP3	3 rd order intercept point	referred to FMIFAMP1IN	126	dBu
Rin	input resistance (single-ended)	FMIFAMP1IN w.r.t. gnd	330	Ω
Rout	output resistance		330	Ω

IF Amplifier 2 (Input at FMIFAMP2IN, fc = 10.7MHz, no mod) (Output at FMIFAMP2OUT loaded with 330 Ω) (antenna level = FMIFAMP2IN - 45dB)

Gain MUST BE SET to 14dB for ISS operation.

G	minimum gain	programmable gain	6	dB
			8	dB
			10	dB
	maximum gain	1	14	dB
IIP3	Input 3 ^d order intercept point	referred to FMIFAMP2IN, G = 8dB	134	dBu
Rin	input resistance (single-ended)	FMIFAMP2IN to gnd	330	Ω
Rout	output resistance		330	Ω

Field-strength Meter (Input at FMMIX2IN; fc = 10.7MHz, no mod) (antenna level = V67 - 49dB)

	3			 	/	
FS1	FSmeter1		V(FMMIX2IN+) = 50 dBu	1.4		dBu
FS2	FSmeter2		V(FMMIX2IN+) = 70 dBu	2.7		dBu
FS3	FSmeter3		V(FMMIX2IN+) = 90 dBu	4.4		dBu
FSR	FSmeter filtering	gresistor	SMETERTC pin	10.7		kΩ
FFSS	Filtered	min		0		V
	FSmeter Slider	max		1.5		V
		step		50		mV

MPX output (output at TUNEROUT)

Gc	conversion gain		5.42	mV/kHz
Vaudio	audio level	40kHz	217	mVp

Field-strength Stop Station (Input at FMMIX2IN - fc = 10.7MHz, no mod) (antenna level = V69 - 49dB)

	J F F F F F F F F F F		 	
FSSSmin	minimum threshold	Vthr = 0.4 V	50	dBu
FSSSmax	maximum threshold	Vthr = 3.4V	78	dBu
FSSSstep	threshold step	ΔV thr = 200mV	3	dB

Soft Mute

SMD	Soft Mute	min		13.4	dB
	Depth			16	dB
				19.5	dB
		max		24	dB
MCVlow	Mute control vo	tage low	V(FMMUTETC) @ No mute attenuation	0.2	V
MCVhigh	Mute control vo	ltage high	V(FMMUTETC) @ Max mute attenuation	2	V

ACMcl	Adjacent	min	Max V(FMMUTETC) in	500	mV
	channel mute	max	Adjacent Channel conditions	2000	mV
	clamp voltage	step		100	mV

ISS Filter (FMIF1AMP1 gain MUST be set to 14dB) *

`	5	/		
BW1	Wide bandwidth	Full bandwidth @ -3dB	120	kHz
BW2	Narrow bandwidth		80	kHz
BWwb	Weather Band bandwidth		30	kHz

* if ISS function is not used, SEEK must be set to "ON" in FM

3.2 AM (Vcc = 8V; Tamb =25°C; Vsg = 74dBu,emf; fc = 999kHz; 30% modulation; fmod = 400Hz unless otherwise specified).

General (with 20pF/65pF dummy antenna; input levels @ SG,emf; output @ audioprocessor output; audioprocessor all flat; stereo decoder input gain = 5.75dB)

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
US	Useable sensitivity	SNR = 20dB		26		dBu
SNR	Signal to Noise ratio			56	60	dB
MS	Maximum Sensitivity	@ ∆Vout = -10dB		20		dBu
THD	Total Harmonic Distortion	mod =30%, Vsg = 74dBu		0.59		%
		mod =80%, Vsg = 74dBu		1.48		%
		mod =30%, Vsg = 120dBu		1.88		%
		mod =80%, Vsg = 120dBu		3		%
THDLF	THD @ low frequency	mod =30%, Vsg = 74dBu, fmod=100Hz		2		%
Vout	Audio output level			266		mVrms
ISN	Interstation noise level	∆Vout @ RF OFF		-35	-31	dB
IFCS	IF Counter sensitivity		8	10	20	dBu
lcc	DC current OSCVcc			5.6		mA
	PLLVcc			1.9		mA
	DIGVcc			12.1		mA
	TUNVcc			68		mA
	IF1Vcc			7.8		mA
	APVcc			27		mA

Mixer1 (Input at AMMIX1IN+, no mod)

Symbol	Parar	neter	Test Condition	Min	Тур	Max	Unit
Gv	conversion gain		from AMMIX1IN+to IFT1 secondary loaded with 330 Ω		13		dB
IIP3	Input 3 rd order ir	tercept point	referred to AMMIX1IN+		130		dBu
Rin	input resistance (differential)		AMMIX1IN+ w.r.t. AMMIX1IN-		1.2		kΩ
CIFT1	IFT1	min	Between MIXOUT+ and		0		pF
	adjustment	max	MIXOUT-		8.25		pF
	capacitor	step			0.55		pF

AGC1 (Wide AGC input = AM Mixer1 input; Narrow AGC input = AM Mixer2 input; Ultra Narrow AGC input = AM IF2 Amp input; fWAGCin = 999kHz, fNAGCIN = 10.7MHz, fUNAGCin = 450kHz)

WAGCsp	Wide AGC	min	AMMIX1IN+ @		85		dBu
	starting point	max	I(AMAGC1VOUT) = 1 uA		104		dBu
NAGCsp	NarrowAGC	min	AMMIX1IN+ @		79		dBu
	starting point	max	I(AMAGC1VOUT) = 1 uA		97		dBu
UNAGCs p	Ultra Narrow AGC	min	AMMIX1IN+ @ I(AMAGC1VOUT) = 1 uA		50		dBu
	starting point	max			97		dBu
AGC1R	AGC1 filtering re	esistor	AMAGC1TC pin		100		Kohm
lout	min		AGC OFF			1	uA
	max		AGC ON	0.4			mA
Vout	min		AGC ON			0.5	V
	max		AGC OFF		3.38		V
AGC1VR	AMAGC1VOUT	output			23		Kohm
out	resistance						

Mixer2 (Input at AMMIX2IN, fc = 10.7MHz, no mod)

Gv, max	conversion gain, no AGC	from AMMIX2IN to IFT2 secondary loaded with 2k Ω	15	dB
Gv, min	conversion gain, full AGC	from AMMIX2IN to IFT2 secondary loaded with $2k\Omega$	-7	dB
IIP3	Input 3 ^e order intercept point	referred to AMMIX2IN, no AGC	120	dBu

305

mVrms

Rin	input resistance	e	AMMIX2IN w.r.t. ground	3	30	Ω
CIFT2	IFT2	min	Between AMMIX2OUT and	()	pF
	adjustment	max	gnd	2	4	pF
	capacitor	step	F	1	.6	pF

IF2 amplifier (Input at AMIF2AMPIN, fc = 450kHz, no mod)

Gv, max	gain, no AGC	max prog		64.8	dB
				62.8	
				61.7	
				60.2	
				58.3	
				55.8	
		min prog		53.2	
∆Gv	gain decrease in	full AGC	w.r.t. Gv, max	-40	dB
Rin	input resistance		AMMIX2IN w.r.t. ground	2	kΩ

AGC2

Vaudio

audio level

AGC2R	AGC2 filtering	reception		150	kΩ	
	resistor	seek		5	kΩ	
Audio outp	ut (output at TUN	EROUT, 2.7kΩ I	oad)			

Field-strength Meter (Input at AMIF2AMPIN; fc = 450 kHz, no mod) (SG,emf level = V65 – 29dB)

30%

	inguinecer (input c	<i>zc / uvin 2/ uvin n 1</i> ,		200	(D)	
FS1	FSmeter1		V(AMIF2AMPIN) = 50 dBu	0.7		dBu
FS2	FSmeter2		V(AMIF2AMPIN) = 70 dBu	2.1		dBu
FS3	FSmeter3		V(AMIF2AMPIN) = 90 dBu	4.2		dBu
FSR	FSmeter	min	SMETERTC pin	16.5		kΩ
	filter resistor	max	1	75		kΩ
FFSS	Filtered	min		0		V
	FSmeter Slider	max		1.5		V
		step		48.4		mV

3.3 OSCILLATORS (Vcc = 8V; Tamb =25°C)

vco

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
Vvco	Oscillation level	Tuning Voltage = 4V	106		108	dBu
C/N	Carrier to Noise ratio	$\Delta f = 1 \text{kHz}$		85		dBc/Hz

XTAL

Symbol	Paran	neter	Test Condition	Min	Тур	Max	Unit
Vxtal	Oscillation level		@ XTAL gate		131		dBu
FXTAL	Adjustment	min	referred to 10.25 MHz		-4		kHz
	frequency	max	centered condition		+4		kHz
	range	step			238		Hz

3.3 AUDIO PROCESSOR (VS = 8V; Tamb = 25° C; RL = 10kOhm; all gains = 0dB; f = 1kHz; unless otherwise specified).

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
INPUT GA	AIN			- 1		
GIN MIN	Min. Input Gain		-1	0	1	dB
GIN MAX	Max. Input Gain		13	15	17	dB
GSTEP	Step Resolution		0.5	1	1.5	dB
QUASI D	DIFFERENTIAL STEREO INPU	T 1&2		I		
Rin	Input Resistance	Any input pin to gnd	70	100	130	kΩ
CMRR	Common Mode Rejection Ratio	Vcm = 1vrms @ 1kHz	45	70		dB
	,	Vсм = 1vrмs @ 10kHz	45	60		dB
VOLUME	CONTROL			I		
Gmax	Max Gain		13	15	17	dB
ASTEP	Step Resolution		0.5	1	1.5	dB
EA	Attenuation Set Error	G = -20 to 20dB	-1.25	0	1.25	dB
		G = -60 to 20dB	-4	0	3	dB
Er	Tracking Error				2	dB
Vdc	DC Steps	Adjacent Attenuation Steps				mV
		From 0dB to GMIN				mV
	UTE/AFS					
Amute	Mute Attenuation		80	100		dB
To	Delay Time T1			0.48		ms
	T2			0.96		ms
	ТЗ			20.2		ms
	T4			40.4		ms
V TH low	Low Threshold for SM/AFS- Pin 1				1	V
VTH high	High Threshold for SM-/AFS-Pin		4			V
BASS CO						
CRANGE	Control Range		±13	±15	±17	dB
ASTEP	Step Resolution		0.5	1	1.5	dB
fC	Center Frequency	fC1	54	60	66	Hz
		fc2	63	70	77	Hz
		fc3	72	80	88	Hz
		fc4	90	100	110	Hz
05466	Ouglity Factor	0:	0.9	(150) 2 1	1 1	
QBASS	Quality Factor	Q1			1.1	
		Q2	1.1	1.25	1.4	
		Q3	1.3	1.5	1.7	
		Q4	1.8	2	2.2	
DCGAIN	Bass-Dc-Gain	DC = off	-1	0	1	dB
		DC = on	3.5	4.4	5.5	dB
MID CON	NTROL	-		•		
CRANGE	Control Range		±13	±15	±17	dB
ASTEP	Step Resolution		0.5	1	1.5	dB
fc	Center Frequency	fc1	450	500	550	Hz
		fc2	0.9	1	1.1	kHz
		fc3	1.35	1.5	1.65	kHz
		fC4	1.8	2	2.2	kHz
QBASS	Quality Factor	Q1	0.9	1	1.1	
		Q2	1.8	2	2.2	
TREBLE	CONTROL	-		•		
CRANGE	Control Range		±13	±15	±17	dB
ASTEP	Step Resolution		0.5	1	1.5	dB
fc	Center Frequency	fc1	8	10	1.0	kHz
		fc2	10	12.5	15	kHz
		fc3	12	15	18	kHz
	L		1	-	-	

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
		fc4	14	17.5	21	kHz
SPEAKE	RATTENUATORS					
RIN	Input Impedance		17.5	25	32.5	kΩ
GMAX	Max Gain		13	15	17	dB
AMAX	Max Attenuation		-70	-79		dB
ASTEP	Step Resolution		0.5	1	1.5	dB
AMUTE	Output Mute Attenuation		80	90		dB
Ee	Attenuation Set Error				±2	dB
Vdc	DC Steps	Adjacent Attenuation Steps				mV
AUDIO C	DUTPUTS					
Vclip	Clipping Level	THD = 0.3%	2.2	2.6		Vrms
R∟	Output Load Resistance		2			kΩ
CL	Output Load Capacitance				10	nF
ROUT	Output Impedance			30	120	Ω
Vdc	DC Voltage Level			3.9		V
GENER/	ÁL.					
Gqd	Gain (QDin)	Quasi-differential Input		0.5		dB
Gstd	Gain (Tuner)	Tuner Input (STD InGain=4dB)		7.5		dB
e NO	Output Noise (QDin)	BW = 20 Hz to 20 kHz			15	μV
		output muted; all flat				
		BW = 20 Hz to 20 kHz		20		μV
		all gain = 0dB				
S/N	Signal to Noise Ratio (QDin)	all gain = 0dB flat; Vo = 2Vкмs		100		dB
		bass treble at 12dB;		96		dB
4	Distantian (ODin)	A-weighted; V o = 2.6VRMS VIN = 1VRMS; all stages 0dB		0.010	0.1	%
d	Distortion (QDin)			0.012	····	%
		VIN = 1VRMS; Bass & Treble = 12dB		0.05	0.1	%
Sc	Channel separation Left/Right	1208	80			dB
0.	(QDin)		00			uр
Er	Total Tracking Error	$A \vee = 0$ to -20dB	-1	0	1	dB
		Av = -20 to -60 dB	-2	0	2	dB
BUS INP	UTS		1			
VL	Input Low Voltage			1	0.8	V
VIE	Input High Voltage		2.5	1		v
İN	Input Current	$V_{IN} = 0.4V$	-5		5	μÂ
Vo	Output Voltage SDA	lo = 1.6mA		1	0.4	
-	Acknowledge	-				-

The SM pin is active low (Mute = 0)
 See note in Programming Part

Symbol	Parame	eter	Test Condition	Min.	Тур.	Max.	Unit
Rin	Input Resistance	FM		70	100	130	kΩ
		AM		1.4	2	2.6	kΩ
Gv	Stereo decoder	min			0.5		dB
	input gain				2.25		dB
					4.0		dB
		max	1		5.75		dB
SVRR	Supply Voltage Rip	ple Rejection	Vripple = 100mV; f = 1KHz	35	60		dB
α	Max. channel Sepa	aration		30	45		dB
THD	Total Harmonic Dis	stortion			0.02	0.3	%
(S+N)/N	Signal plus Noise t	o Noise Ratio	A-weighted, S = 2Vrms @	80	91		dB
			APout				
MONO/ST	EREO-SWITCH				-		
VPTHST1	Pilot Threshold Vo	tage	for Stereo, PTH = 1		15		mV
VPTHST0	Pilot Threshold Vo		for Stereo, PTH = 0		25		mV
VPTHMO1	Pilot Threshold Vo	Itage	for Mono, PTH = 1		12		mV
VPTHMOO	Pilot Threshold Voltage		for Mono, PTH = 0		19		mV
PLL			•				
 ∆f/f	Lock Range			-6	1	+6	%
f0	Center mir	1	VCO Vtuning fixed to	-	328	-	kHz
	frequency ma		reference voltage		619		kHz
	range ste				9.4		kHz
PILmax	Maximum input pil		@TUNERIN	276	0		mV
	ASIS and HIGHC			2.0			
	Deemphasis Time		Bit 7, Subadr, 10 = 0,	25	50	75	μs
THC50		Constant	VLEVEL >> VHCH	25	50	15	μο
THC75	Deemphasis Time	Constant	Bit 7, Subadr, $10 = 1$,	50	75	100	μs
01075			VLEVEL >> VHCH				pro
THC50	Highcut Time Cons	stant	Bit 7, Subadr, 10 = 0,	100	150	200	μs
			VLEVEL >> VHCL				r
THC75	Highcut Time Cons	stant	Bit 7, Subadr, $10 = 1$,	150	225	300	μs
			VLEVEL >> VHCL				
STEREOE	BLEND - and HIGI	HCUT-CONT					
REF5V	Internal Reference			4.7	5	5.3	V
LGmin	Min. LEVEL Gain			-1	0	1	dB
LGmax	Max. LEVEL Gain		<u> </u>	8	10	12	dB
LGstep	LEVEL Gain Step	Resolution		0.3	0.67	1	dB
VSBL min	Min. Voltage for M		1	25	29	33	%RE-5
VSBLmax	Max. Voltage for M		<u> </u>	54	58	62	%REF5
VSBLstep	Step Resolution		<u> </u>	2.2	4.2	6.2	%REF5
VHCHmin	Min. Voltage for No	O Highcut		38	42	46	%REF5\
VHCHmax	Max. Voltage for N			62	66	70	%REF5\
VHCHstep	Step Resolution		<u> </u>	5	8.4	12	%REF5\
VHCL min	Min. Voltage for FL	JLL Highcut	1	12	17	22	%VHCF
VHCL max	Max. Voltage for F		1	28	33	38	%VHCF
VHCL step	Step Resolution	3		2.2	4.2	6.2	%VHCF
	d harmonic suppr	ession at the	output			0.2	
α19	Pilot Signal f = 19k			40	50		dB
α.19 α.38	Subcarrier $f = 38Kt$			40	- 50	75	dB
	Subcarrier f = 57K						
α57						62	dB
α76	Subcarrier f = 76K	ΠZ				90	dB

3.4 STEREO DECODER (Vcc = 8V; deemphasis time constant = 50μ s, VMPX = 305mVrms (75kHz deviation), fm= 1kHz, Gv = 4dB, Tamb = 27° C; unless otherwise specified).

3.5 NOISE BLANKER

Symbol	Parameter	Test Condit	Min.	Тур.	Max.	Unit	
Vtr	Trigger Threshold 0) 1)	meas. with VPEAK =	NBT = 111	(c)	30	(c)	тVор

Symbol	Parameter	Test Condi	tion	Min.	Тур.	Max.	Unit
		0.9V	NBT = 110	(C)	35	(c)	тVор
			NBT = 101	(C)	40	(C)	тVор
			NBT = 100	(c)	45	(C)	тVор
			NBT = 011	(c)	50	(c)	тVор
			NBT = 010	(C)	55	(C)	тVор
			NBT = 001	(C)	60	(C)	тVор
			NBT = 000	(C)	65	(c)	тVор
VTRNOISE	Noise Controlled Trigger	meas. with VPEAK =	NCT = 00	(c)	260	(c)	тVор
	threshold 2)	1.5V	NCT = 01	(C)	220	(C)	тVор
			NCT = 10	(c)	180	(C)	тVор
			NCT = 11	(c)	140	(c)	тVор
Vrect	Rectifier Voltage	$V_{MPX} = 0 mV$	NRD 6) = 00	0.5	0.9	1.3	V
		VMPX = 50mV; f = 150KH		1.5	1.7	2.1	V
		VMPX = 200mV; f = 150K	Hz	2.2	2.5	2.9	V
VRECTDEV	deviation dependent	meas. with VMPX =	OVD = 11	0.5	0.9	1.3	Vop
	rectifier Voltage 3)	800mV (75KHz dev.)	OVD = 10	0.9	1.2	1.5	Vop
			OVD = 01	1.7	2	2.3	VOP
			OVD = 00	2.5	2.8	3.1	Vop
V RECT FS	Fieldstrength Controlled	Rectifier Voltage 4)	FSC = 11	0.5	0.9	1.3	V
	Rectifier Voltage 4)	V MPX = 0 mV	FSC = 10	0.9	1.4	1.5	V
		VLEVEL << VSBL	FSC = 01	1.7	1.9	2.3	V
		(fully mono)	FSC = 00	2.1	2.4	3.1	V
Ts	Suppression Pulse	Signal HOLDN	BLT = 00		38		μs
	Duration 5)	in Testmode	BLT = 10		32		μs
			BLT = 01		25.5		μs
			BLT = 00		22		μs
Vrectadj	Noise Rectifier	Signal PEAK in	NRD = 00 6)	(c)	0.3	(c)	V/ms
	discharge adjustment 6)	Testmode	NRD = 01 6)	(c)	0.8	(c)	V/ms
			NRD = 10 6)	(c)	1.3	(c)	V/ms
			NRD = 11 6)	(c)	2	(c)	V/ms
SRPEAK	Noise Rectifier Charge	Signal PEAK in	PCH = 0 7)	(c)	10	(c)	mV/μs
		Testmode	PCH = 1 7)	(c)	20	(c)	mV/μs
VADJMP	Noise Rectifier	Signal PEAK in	MPNB = 00 8)	(c)	0.3	(c)	V/ms
	adjustment through	Testmode	MPNB = 00 8	(c)	0.5	(c)	V/ms
	Multipath 8)		MPNB = 00 8)	(c)	0.7	(c)	V/ms
			MPNB = 00 8)	(c)	0.9	(c)	V/ms

(c) = by design/characterization functionally guaranteed through dedicated test mode structure

0) All Thresholds are measured using a pulse with T R=2µs, T HIGH = 2µs and T F = 10µs. The repetition rate must not increase the PEAK voltage. 1) NBT represents the Noiseblanker Byte bits D2, D0 for the noise blanker trigger threshold D to the noise control led trigger adjust

NBT represents the Noiseblanker Byte bits D2, Do for the noise blanker trigger threshold
 NAT represents the Noiseblanker Byte bit pair D4, D3 for the noise blanker triggeradjustment
 OVD represents the Noiseblanker Byte bit pair D7, D6 for the over deviation detector
 FSC represents the Fieldstrength Byte bit pair D7, D6 for the fieldstrength control
 BLT represents the Speaker RR Byte bit pair D7, D6 for the blanktime adjustment
 NRD represents the Configuration-Byte bit pair D1, D0 for the noise rectifier discharge-adjustment
 PCH represents the Stereodecoder-Byte bit D5 for the noise rectifier charge-current adjustment

8) MPNB represents the HighCut-Byte bit D7 and the Fieldstrength-Byte D7 for the noise rectifier multipath adjustment

471

3.6 MULTIPATH AND QUALITY DETECTORS

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
fcmp	Center Frequency of Multipath-	Stereodecoder locked on Pilottor	ne	19		kHz
0	Bandpass					
GBPMP	Bandpass Gain	bits D^2 , D^1 configuration byte = 0		6		dB
		bits D_2 , D_1 configuration byte = 1		12		dB
		bits D_2 , D_1 configuration byte = 0		16		dB
		bits D_2 , D_1 configuration byte = 1	1	18		dB
GRECTMP	Rectifier Gain	bits Dr, Do configuration byte = 0	0	7.6		dB
		bits Dr, D configuration byte = 0)1	4.6		dB
		bits Dr, D configuration byte = 1	0	0		dB
		bits Dr, D configuration byte = 1	1	off		
СНМР	Rectifier Charge Current	bit D_{0} configuration byte = 0		0.5		μA
		bit Daconfiguration byte = 1		1		μA
DISMP	Rectifier Discharge Current		0.5	1	1.5	mA
A	Multipath Influence Factor	Addr. 12 / Bit 5+6 0	00	0.7		dB
		0)1	0.85		dB
		1	0	1		dB
		1	1	1.15		dB
В	Noise Influence Factor	Addr. 16 / Bit 1+2 0	00	15		dB
		0)1	12		dB
		1	0	9		dB
		1	1	6		dB

4.0 FUNCTIONAL DESCRIPTION

4.1 FM Section

Mixer1, AGC and 1st IF

Mixer1 is a wide dynamic range stage with low noise and large input signal performance. The mixer1 tank center frequency can be adjusted by software (IF1T). The AGC operates on different sensitivities and bandwidths (FMAGC) in order to improve the input sensitivity and dynamic range (keyed AGC). The output signals of AGC are controlled voltage and current for preamplifier and prestage P-I-N diode attenuator (see Figure 5). Two 10.7MHz amplifiers (IFG1 – fixed gain - and IFG2 programmable) correct the IF ceramic insertion loss.

Mixer2, Limiter and Demodulator

In this 2nd mixer stage the first 10.7MHz IF is converted into the second 450kHz IF. A multistage limiter generates signals for the complete integrated demodulator without external tank. MPX output DC offset compensation is possible via software.

Quality Detection and ISS (see Figure 3) **Fieldstrength**

Parallel to the mixer2 input a 10.7MHz limiter generates a signal for the digital IF counter and a fieldstrength output signal. This internal unfiltered fieldstrength is used for adjacent channel and multipath detection. The behaviour of this output signal can be corrected for DC offset (SL). The internally generated unfiltered fieldstrength is filtered at pin #SMETERTC and used for softmute function, FM AGC keying and generation of ISS filter switching signal for weak input level (sm).

Adjacent Channel Detector

The input of the adjacent channel detector is AC coupled to the internal unfiltered fieldstrength. A programmable and configurable highpass or bandpass filter (ACF) and amplifier (ACG) followed by a rectifier measure the adjacent channel content. This voltage is compared with an adjustable threshold (ACWTH, ACNTH) comparator (comparator1). The output signal of this comparator generates a DC level at PIN15 with a programmable time constant. Time constant control (TISS) for the adjacent channel is made by linearly charging and discharging an external capacitor following. The charge current is fixed and the discharge current is controlled by I²C bus. This level produces digital signals (ac, ac+) after comparing by the following comparator4. The adjacent channel information after filtering and rectification is available as analog output on pin #TUNQUALITY (the gain can be selected via I²C bus) in combination with multipath content information. It is possible to enable adjacent channel content information output only via fC bus control.

Multipath Detector

The input of the multipath detector is AC coupled to the internal unfiltered fieldstrength. A programmable band-pass filter (MPF) and amplifier (MPG) followed by a rectifier measures the multipath content. This voltage is compared with an adjustable threshold (MPTH) comparator (comparator2). The output signal of this comparator2 is used to disable the adjacent channel detector control of the ISS filter in case of strong multipath, which would otherwise result in bandwidth reduction because of the multipath-induced highfrequency content of the fieldstrength signal. The multipath detector influence on the adjacent channel detector is selectable by fC bus (MPOFF). The multipath information after filtering and rectification is available as analog output on pin #TUNQUALITY (the gain can be selected via IC bus) in combination with the adjacent channel content information. It is possible to enable multipath content information output only via I^2C bus control.

450kHz IF Narrow Bandpass Filter (ISS filter) The device features an additional automatically selectable IF narrow bandpass filter for suppression noise and adjacent channel signals. This narrow filter has three switchable bandwidth positions: narrow range (80kHz), mid range (120kHz) and weather band (30kHz). WHen the ISS filter is not inserted the IF bandwidth (wide range) is defined only by the ceramic filter chain. The filter is switched in after mixer2 before the 450kHz limiter stage. The centre frequency can be finely adjusted (AISS) by software.

Deviation Detector

In order to avoid excessive audio distortion the narrow ISS filter is switched OFF when overdeviation of the incoming signal is detected. The demodulator output signal is lowpass filtered and rectified to generate a DC level in an external capacitor through a software-controlled current (TDEV). This level is compared with a programmable threshold (DWTH, DTH) comparator (comparator3) to generate two digital signals (dev, dev+).

ISS Switch Logic

All digital signals coming from adjacent channel detector, deviation detector and softmute are combined in a decision matrix to generate the control signals for the ISS filter switch. The IF bandpass switch mode can be also controlled by software (ISSON, ISS30, ISS80, ISSCTL). The switch-on of the IF bandpass can be further controlled from the outside by manipulation of the voltage at pin #ISSTC. Two application modes are available (APPM). The conditions are described in table 1.

Soft Mute Control

The external fieldstrength signal at pin #SMETERTC is the reference for MPX mute control. The start point and mute depth are programmable over a wide range. The time constant is defined by the external capacitor connected to pin #FMMUTETC.

Additionally adjacent channel mute function is supported. A software-configurable highpass / bandpass filter centered at about 100kHz followed by an amplifier and a peak rectifier generates adjacent noise information starting from the MPX output; the information is acted upon with the same time constant as the softmute by the MPX muting circuit. The adjacent channel mute starting point, slope and depth are Γ C bus programmable.

Station Detector and Seek Stop

A station detection function is provided for easy seek stop operation. The unfiltered fieldstrength signal is compared with a programmable threshold and the result (logic '1' if the current station strength is higher than the threshold) is combined by an AND gate with the IF counter output (logic '1' if the current channel is centered within a programmable window around the desired frequency). The result is available on pin #SD for direct connection to the microprocessor. Channel quality assessment for RDS Alternate Frequency operation makes use of the SD signal in conjunction with analog information on adjacent channel and multipath content on pin #TUNQUALITY and channel noise (furtherly combined with multipath content information) on pin #QUALITY.

4.2 AM Section

The upconversion mixer1 is combined with a gain control circuit 1 sensing three input signals: ultra-narrow band information (from the IF2 amplifier input - pin #AMIF2AMPIN), narrow-band information (from the mixer2 input - pin #AMMIX2IN) and wide band information (from the mixer1 input - pins #AMMIX1IN+ and This gain control circuit #AMMIX1IN-). generates two output signals: a current for P-I-N diode attenuation and a voltage for the external preamplifier cascode upper base. It is possible to put in a separate narrow bandpass filter before mixer2 at PIN 58. The intervention point for first AGC on all three bands is programmable by software.

The oscillator frequency for mixer1 is generated by dividing the FM VCO frequency (AMD) by 6, 8 and 10 (6 for Japan applications, 8 for Eastern European applications, 10 for Western European and North American operation).

In mixer2 the IF1 is downconverted into the 450kHz IF2. The gain of mixer2 is reduced by the 2nd AGC after the gain of the subsequent IF2 amplifier has been reduced by 30dB. The mixer2 tank center frequency is software adjustable (IF2T).

After channel selection is done by the ceramic filter, a 450kHz amplifier with a gain control is included. The gain is controlled by the AGC2 loop over a 30dB range; the full gain with no AGC applied is programmable.

The AM demodulation is made by multiplication of the IF2 amplifier output by the amplified and limited signal coming from the IF2 amplifier input, thus making the demodulation process inherently linear.

The demodulated audio signal is low-passed by the capacitor at pin #AMAGC2TC to produce the DC AGC2 voltage. The low-pass time constant is switchable by a ratio of 30 in order to reduce the settling time of the AGC2 in 'seek' mode (AMSEEK).

The FM 450kHz limiter is used to generate the square wave needed by the AM demodulator, a fieldstrength indication and to feed the AM IF

counter. The fieldstrength information is generated mainly from the narrow-band signal at the input of the IF2 amplifier; since the dynamic range at that input is limited by the AGC2 action, a fieldstrength extension is made adding the contribution of the signal at the input of mixer2. Since the bandwidth there is very large, though, the latter contribution is enabled only if the strength of the narrow-band signal is higher than an internally defined threshold. The fieldstrength signal must be low-passed to remove audio content and this is done by use of the capacitor at pin #SMETERTC with an fC bus programmable internal resistor. The value of the capacitor is determined for correct FM operation; the value of the internal resistor for AM is selectable in order to make the AM time constant suitable for AM operation.

A station detection function is provided for easy seek stop operation. The fieldstrength signal is compared with a programmable threshold and the result (logic '1' if the current station strength is higher than the threshold) is combined by an AND gate with the IF counter output (logic '1' if the current channel is centered within a programmable window around the desired frequency). The result is available on pin #SD for direct connection to the microprocessor.

4.3 PLL and IF Counter Section

The IC contains a frequency synthesizer and a loop filter for the radio tuning system. Only one VCO is required to build a complete PLL system for FM and AM upconversion. For auto search stop operation an IF counter system is available.

PLL Frequency Synthesizer Block

The counter works in a two stages configuration. The first stage is a swallow counter with a two-modulus (32/33) precounter. The second stage is an 11-bit programmable counter. The circuit receives the scaling factors for the programmable counters and the values of the reference frequency via I²C bus. The reference frequency is generated by an adjustable internal (XTAL) oscillator followed by the reference divider. The reference and stepfrequencies are independently selectable (RC, PC). The phase-frequency detector outputs switches the programmable current source. The loop filter integrates the latter to a DC voltage. The current source values is programmable with 6 bits received via fC bus

(A, B, CURRH, LPF). To minimize the noise induced by the digital part of the system, a special guard area is implemented. The loop gain can be adjusted for different conditions by setting the current values of the chargepump generator.

Frequency Generation for Phase Comparison

The VCO signal is fed to a two-modulus counter (32/33) prescaler, which is controlled by a 5-bit divider (A). A 5-bit register (PC0 to PC4) controls this divider. The output of the prescaler is connected to an 11-bit divider (B), controlled by an 11-bit PC register (PC5 to PC15).

The following expressions relate the divider output frequency (f_{SYN} , forced by the loop to equal the reference frequency at the phase comparator input f_{EF}) to the VCO frequency (f_{VCO}) and to the crystal oscillator frequency (f_{TTAL}):

 $f_{XTAL} = (R+1) \times f_{REF}$

 $f_{VCO} = [33 \times A + (B + 1 - A) \times 32] \times f_{REF}$ $f_{VCO} = (32 \times B + A + 32) \times f_{REF}$ Important: For correct operation: A 32; B A

Three State Phase Comparator

The phase comparator generates a phase error signal according to phase difference between f_{SYN} and f_{REF} . This phase error signal drives the charge pump current generator.

Charge Pump Current Generator

This system generates correction current pulses with a polarity and a duration dictated by the phase error signal. The current absolute values are programmable through register A for high current and register B for low current.

Inlock Detector

The charge pump operates in high current mode when the phase difference between between f_{SYN} and f_{REF} is high. The switch back to low current mode can be done either automatically as a function of the inlock detector output (setting bit LDENA to "1") or via software.

After reaching a phase difference equivalent to 10-40 ns (programmable) and a delay multiple of $1/f_{REF}$, the chargepump is forced in low current mode. A new PLL divider programming by I^2C bus will switch the chargepump into high current mode.

A few programmable phase errors (D0, D1) are available for inlock detection. The count of detected inlock informations to release the inlock signal is adjustable (D2, D3), to avoid switching to low current during a frequency jump.

Low Noise CMOS Op-amp

An internal voltage divider at pin #LFREF is connected to the positive input of the low noise op-amp. The charge pump output is connected to the negative input. This internal amplifier in cooperation with external components provides the active loop filter. Only one loop filter connection is provided because the same reference frequency is used for both AM and FM operation. The pin #LFHC is connected in such a way as to partially shunt the loop filter in order to decrease the time constant of the filter itself during jumps with high current mode activated.

IF Counter Block

The input signal for FM and AM has the same structure although FM IF is measured at IF1 (10.7MHz) and AM IF is measured at IF2 (450kHz). The degree of integration is adjustable to up to eight different measuring cycle times. The tolerance of the accepted count value is adjustable to reach the optimum compromise between search speed and evaluation precision.

T center frequency of the measured count value is adjustable to fit the IF -filter tolerance.

The IF-Counter Mode

The IF counter works in 2 modes controlled by the IFCM register.

Sampling Timer

A 14-bit programmable (IRC) sampling timer generates the gate signal for the main counter. In FM mode a 6.25kHz frequency reference is generated for this purpose, whereas in AM mode this reference becomes 1kHz. These reference frequencies are further divided to generate the measurement time windows (160us – 320us ... 20.48ms for FM, 1ms – 2ms ... 128ms for AM).

Intermediate Frequency Main Counter

This counter is a 11 - 21-bit synchronous autoreload down counter. Five bits (CF) are programmable to allow the adjustment to the peak of the IF-filter response. The counter length is automatically adjusted to the chosen sampling time and counter mode (FM, AM). The IF counter is also used to automatically perform the stereo decoder 456kHz VCO frequency adjustment.

At the start the counter will be loaded with a value equivalent to the expected number of zero-crossing in the sampling time window (t_{Sample} x f_{IF}). If the correct frequency is applied to the IF counter input, at the end of the sampling time the main counter will have either a Oh state or a 1FFFFFh state stored. A deviation from the expected IF will result in a difference of the counter final state from either of these values. The counter final state is then compared to either 0h or 1FFFFh minus a number of LSB's determined by the acceptable frequency window programming (EW). If the comparison result is good the IF counter output changes from LOW to HIGH and is made available outside at the pin #SD (after a NAND operation with the signal strength evaluation circuit). The following relationships apply:

$t_{TIM} = (IRC + 1) / f_{OSC}$	
$t_{CNT} = (CF + 1697) / f_{IF}$	(FM mode)
$t_{CNT} = (CF + 448) / f_{IF}$	(AM mode)

where

 t_{TIM} = IF timer cycle time (sampling time) t_{CNT} = IF counter cycle time

Counting succesful:

 $t_{CNT} - t_{ERR}$ t_{TIM} $t_{NT} + t_{ERR}$

Count failed:

 $\begin{array}{l} t_{\mathsf{TIM}} > t_{\mathsf{CNT}} + t_{\mathsf{ERR}} \\ t_{\mathsf{TIM}} < t_{\mathsf{CNT}} - t_{\mathsf{ERR}} \end{array}$

where

 t_{ERR} = discrimination window (controlled by the EW registers)

The IF counter can be started only by inlock information from the PLL, and it is enabled by software (IFENA).

Adjustment of the Measurement Time and Frequency window

The measurement precision is adjustable by controlling the width of the frequency

discrimination window through control registers EW0 to EW2. The center frequency of the discrimination window is adjustable by the control register CF0 to CF4. The measurement time per cycle is adjustable by setting the registers IFS0 - IFS2.

4.4 AUDIO PROCESSOR

Input Multiplexer

CD quasi differential 1 CD quasi differential 2 Stereodecoder input (for both FM and AM signals).

Input stages

The quasi-differential input stages (see figure 4) have been designed to cope with some CD players in the market having a significant high source impedance which affects strongly the common-mode rejection of "normal" differential input stages. The additional buffer of the CD input avoids this drawback and offers the full common-mode rejection even with those CD players. The quasi-differential input can also be used with normal stereo single-ended output signal sources such as TAPEOUT.

AutoZero

In order to reduce the number of pins there is no AC coupling between the In-Gain and the following stage, so that in theory any offset generated by or before the In-Gain stage would be transferred or even amplified to the output. To avoid this undesired situation a special offset cancellation stage called AutoZero is implemented. This stage is located before the Volume block to eliminate all offsets generated by the Stereodecoder, the Input Stage and the In-Gain stage (please note that externally generated offsets, e.g. those generated because of leakage current into the coupling capacitors, are not cancelled).

The auto-zeroing is started every time the APSD data byte 0 is selected and takes a maximum time of 0.6ms. The rationale behind this choice is that the APSD byte encodes the signal source selection, and auto-zero ought to be performed every time a new source is selected. To avoid audible clicks the audioprocessor is muted before the volume stage during this time.

AutoZero Remain

In some cases, for example if the uP is executing a refresh cycle of the I²C bus programming, it is not necessary to start a new AutoZero action because no new source is selected and an undesired mute would appear at the outputs. For such applications the device can be switched in the "AutoZero Remain mode" (Bit 6 of the APSD subaddress byte). If this bit is set to high, the APSD data byte 0 can be loaded without invoking the AutoZero and the old adjustment value remains.

Softmute

The digitally controlled softmute stage allows signal muting and unmuting with a f^2 C bus programmable slope. The mute process can either be activated by pin #AUDIOMUTE or f^2 C bus. The slope is realized in a special S-shaped curve so as to slowly mute in the critical regions (see figure 5). For timing purposes the Bit 3 of the f^2 C bus output register is set to 1 from the start of muting until the end of unmuting.

BASS

There are four parameters programmable in the bass filter stage: (see figs 6, 7, 8, 9):

Attenuation

Figure 6 shows the attenuation as a function of frequency at a center frequency at a center frequency of 80Hz.

Center Frequency

Figure 7 shows the four possible center frequencies: 60,70,80 and 100Hz.

Quality Factors

Figure 8 shows the four possible quality factors: 1, 1.25, 1.5 and 2.

DC Mode

In this mode the DC gain is increased by 5.1dB. In addition the programmed center frequency and quality factor is decreased by 25%: this can be used to realize different center frequencies or quality factors with respect to the values listed in the "BASS" section.

MID

There are 3 parameters programmable in the mid filter stage (see figs. 10, 11 & 12):

Attenuation

Figure 10 shows the attenuation as a function of frequency at a center frequency of 1kHz. **Center Frequency**

Figure 11 shows the four possible center frequencies: 500Hz, 1kHz, 1.5kHz and 2kHz.

Quality Factor

Figure 12 shows the two possible quality factors (1 and 2) at a center frequency of 1kHz.

TREBLE

There are two parameters programmable in the treble filter stage (see figs 13, 14):

Attenuation

Figure 13 shows the attenuation as a function of frequency at a center frequency of 17.5kHz. **Center Frequency**

Figure 14 shows the four possible Center Frequencies: 10, 12.5, 15 and 17.5kHz.

AC Coupling

In some applications additional signal manipulations are desired such as surround sound processing or more extensive band equalizing. For this purpose a AC-Coupling is placed before the Speaker-attenuators, which can be activated or internally shorted by Bit7 in the APSD data byte 0. The input impedance of the AC Inputs is $25k \Omega$. The external AC coupling is advised for those applications where very low-level "pop" performance is a must.

Speaker Attenuator

The speaker attenuators have exactly the same structure and range as the Volume stage.

4.5 STEREODECODER

The stereodecoder part of the present device (see Fig. 15) contains all functions necessary to demodulate the MPX signal such as pilot tone dependent MONO/STEREO switch as well as "stereoblend" and "highcut" functions.

Stereode coder Mute

The device has a fast and easy-to-control RDS mute function meant for "freezing" the stereo decoder status during the RDS AF check time period. When this function is invoked three effects take place:

 the stereo decoder input impedance changes to infinity (condition known as high-ohmic input); this prevents the decoupling capacitor between the pins #TUNER_OUT (tuner output) and #TUNER_IN (stereo decoder input) to be discharged by a channel with a potentially different DC output for the duration of the AF check;

- 2) the stereo decoder PLL pilot detector is held at the current value;
- the external capacitor of the multipath detector used inside the stereo decoder for quality control is disconnected from the dection circuit in order to make quality checking the AF faster.

The RDS mute is activated from pin #RDSMUTE in AND with Bit 0 of APSD data byte 9.

Stereo Decoder Input stage, Ingain + Infilter The stereo decoder is crossed by both the FM and the AM signal: the input impedance of the pin #TUNER_IN is different between the two modes in order to allow the same external coupling components between #TUNER_OUT and #TUNER_IN to realize different filtering functions. Whilst the input impedence in FM is 100k Ω , in AM the input impedance is decreased to 2k Ω : this allows the realization of typical high-pass filters with a corner frequency of 70Hz for AM and less than 5Hz for FM. The low-pass section of the typical AM transfer function is realized by use of the internal FM High-Cut filter.

The Ingain stage allows to adjust the MPX signal to a magnitude of about 1Vrms internally which is the recommended value. The 4th order input filter has a corner frequency of 80kHz and is used to attenuate spikes and nose and acts as an anti aliasing filter for the following switch capacitor filters.

Demodulator

In the demodulator block the left and the right channel are separated from the MPX signal. In this stage the 19 kHz pilot tone is cancelled.

To reach a good channel separation the device offers an f^2C bus programmable roll-off adjustment which is able to finely compensate for the low-pass behaviour of the tuner section. An adjustment to better than 40dB channel separation is possible.

The bits for this adjustment are located ogether with the fieldstrength adjustment in one byte. This gives the possibility to perform an optimization step during the production of the carradio where the channel separation in relation to the fieldstrength control are trimmed. The setup of the Stereoblend characteristics, which is programmable in a wide range, is described in 2.8.

De-emphasis and Highcut.

One filter is provided to realize de-emphasis and High-Cut filtering.

The lowpass filter for the de-emphasis allows to choose between a time constant of 50us and 75us.

The filter time constant can further be controlled in both cases over the range

 $\tau = 2 \tau_{\text{DEEMPH}}$. The control is automatically performed as a function of the filtered field strength level: inside the highcut control range (between VHCH and VHCL) the level is converted into a 5 bit word which drives the lowpass time constant. The FM highc ut function can be switched off by fC bus (bit 0,of APSD data byte 11). The setup of the highcut characteristics is described in 2.9.

In AM the high-cut filter can be programmed (bit 3 to 7 of APSD data byte 16) to a fixed value (inside the above-mentioned programmable range) in order to provide the desired lowpass characteristic of the AM signal.

PLL and Pilot Tone Detector

The PLL is tasked with locking on the 19kHz pilot tone during a stereo transmission to allow the correct demodulation. The detector enables the stereo demodulation if the pilot tone reaches the selected pilot tone threshold VPTHST. Two different thresholds are available. The detector output can be checked by reading the status byte of the TDA7407 via I²C bus.

Fieldstrength Control

The filtered field strength signal is fed to the stereo decoder where it can be finely adjusted and normalized so that it can be used to control the highcut and stereoblend functions. Furthermore the adjusted signal can also be used to control the noise-blanker thresholds. The unfiltered field strength meter, on the other hand, is used as input for the stereo decoder multipath detector. These additional functions are described in sections 3.3 and 4.

LEVEL Input and Gain

To help suppress undesired high frequency modulation of the highcut and stereoblend functions the tuner filtered field strength signal (LEVEL) is lowpassed by a combination of a 1st order RC low-pass at 53kHz (working as anti-aliasing filter) and a 1st-order switched capacitor lowpass at 2.2kHz. The second stage is a programmable gain stage to finely adapt the LEVEL signal internally against tuner spread (see Testmode section 5 LEVELINTERN). The gain is widely programmable in 16 steps from 0dB to 10dB (step = 0.67dB).

Stereoblend Control

The stereoblend control block converts the internal LEVEL voltage (LEVELINTERN) into a demodulator-compatible analog signal which is used to control the channel separation between 0dB and the maximum separation. This control range has a fixed upper limit which is the internal reference voltage REF5V. The lower limit can be programmed between 29.2% and 58% of REF5V in 4.167% steps (see figs. 14, 15).

To adjust the LEVEL voltage to the proper range two values must be defined: the LEVEL gain LG and VSBL (see fig. 15). To adjust the voltage where the full channel separation is reached (VST) the LEVEL gain LG has to be defined. The following equation can be used to estimate the gain:

REF5V

$LG = \frac{1}{Fieldstrengthvoltage[STEREO]}$

The gain L_G can be programmed with 4 bits. The MONO voltage VMO (0dB channel separation) can be chosen selecting VSBL. All the necessary internal reference voltages like REF5V are derived from a bandgap circuit, therefore they have a temperature coefficient which is practically zero.

Highcut Control

The highcut control setup is similar to the stereoblend control setup : the starting point VHCH can be set with 2 bits to be 42, 50, 58 or 66% of REF5V whereas the range can be set to be 17, 22, 28 or 33% of VHCH (see fig. 19).

4.6 NOISE-BLANKER

In the automotive environment the MPX signal is disturbed by spikes produced for example by the ignition and by the wiper motor. The aim of the noiseblanker part is to cancel the audible influence of these spikes. To perform this function the output of the stereodecoder is held at the curent voltage for a time between 22 and 38us (programmable). The block diagram of the noiseblanker is shown in fig.20. In the first stage the spikes are detected but to avoid a wrong triggering on high frequency (white) noise a complex trigger desensitization control is implemented. Behind the trigger stage a pulse former generates the "blanking" pulse

Trigger Path

The incoming MPX signal is highpassed by a filter with a corner frequency of 140kHz, amplified and rectified. The rectified signal (RECT) is lowpassed to generate the signal PEAK. Also noise at a frequency higher than 140kHz increases PEAK. The lowpass output voltage can be adjusted by changing the noise rectifier discharge current. The PEAK voltage is fed to a threshold generator which adds to the PEAK voltage a constant voltage VTH, thus producing the trigger threshold PEAK+VTH. Both RECT and PEAK+VTH are fed to a comparator which trig-gers a re-triggerable monoflop. The monoflop output activates the sample-and-hold circuits in the signapath for a selectable duration.

Automatic Noise Controlled Threshold Adjustment (ATC)

There are mainly two independent possibilities to program the trigger threshold:

- a) programming the so-called "low threshold" in 8 steps;
- b) programming the so-called "noise-adjusted threshold" in 4 steps

The "low threshold" is active in combination with a good MPX signal without any noise; the PEAK voltage is less than 1V. The sensitivity in this operating mode is high.

If the MPX signal is noisy the PEAK voltage increases due to the higher noise, which is also rectified. With increasing of the PEAK voltage the trigger threshold increases, too. This particular mechanism ("noise-adjusted threshold") is programmable in 4 steps.

AUTOMATIC THRESHOLD CONTROL MECHANISM

Automatic Threshold Control by the Stereoblend Voltage

Besides the noise-controlled threshold adjustment there is an additional possibility to influence the trigger threshold which depends on the stereoblend control.

The point where the MPX signal starts to become noisy is fixed by the RF part. Therefore also the starting point of the normal noise controlled trigger adjustment is fixed. In some cases the behavior of the noiseblanker can be improved by increasing the threshold even in a region of higher fieldstrength. Sometimes a wrong triggering occures for the MPX signal often shows distortion in this range which can be avoided even if using a low threshold. Because of the overlap of this range and the range of the stereo/mono transition it can be controlled by stereoblend. This threshold increase is programmable in 3 steps or switched off.

Over Deviation Detector

If the system is tuned to stations with a high deviation the noiseblanker might be erroneously triggered on the higher frequencies of the modulation. To avoid this unnecessary muting of the signal, the noiseblanker offers a deviation-dependent threshold adjustment. By rectifying the MPX signal a further signal representing the actual deviation is obtained. This is used to increase the PEAK voltage. The circuit offset, gain (and enabling) are programmable in 3 steps.

4.7 MULTIPATH DETECTOR

Using the stereo decoder multipath detector the audible effects of a multipath condition can be minimized. A multipath condition is detected by rectifvina the 19kHz spectrum in the fieldstrength signal. An external capacitor is used to define the attack and decay times (see block diagram fig. 21). The pin #MULTIPATHTC is externally connected to a capacitor of about 47nF and the MPIN signal is internally connected to the unfiltered field strenath.

To avoid losing the information stored in the external capacitor during AF checks but at the same time to allow some fast multipath detection capability during the same AF check period, the external capacitor is disconnected by the MP-Hold switch. This switch is controlled directly by the pin #RDSMUTE.

Moreover, selecting the "internal influence" in the configuration byte, the channel separation is automatically reduced during a multipath condition according to the voltage appearing a the pin #MULTIPATHTC.

Programming

To obtain a good multipath performance an adaptation is necessary. Therefore tha gain of

the 19kHz bandpass is programmable in four steps as well as the rectifier gain. The attack and decay times can be set by properly choosing the value of the external capacitor.

4.8 QUALITY DETECTOR

The device offers a quality detector output voltage representing the quality of the FM reception conditions. This voltage is derived from MPX noise information and multipath information according to the following formula: Quality = 1.6 (Vnoise -0.8V)+ a (REF5V-VMPOUT)

The noise signal is the PEAK signal of the noise blanker without additional influences. The multipath information weight "a" can be programmed between 0.7 and 1.15. The circuit output pin #QUALITY is a low impedance output able to drive external circuitry as well as suitable to be simply fed to an A/D converter for RDS applications.

AF Search Control

The device is supplied with several functionality to support AF-checks using the stereodecoder. As already mentioned before the high ohmic mute feature at the stereo decoder input avoids any clicks during the jump condition.

It is possible at the same time to evaluate the noise- and multipath-content of the alternate frequency by using the Quality detector output. During this time the multipath detector is automatically switched to a small time constant. One dedicated pin (#RDSMUTE) is provided in order to separate the audioprocessor-mute and stereodecoder AF-functions.

4.9 l²C-Bus Interface

I²C bus protocol is supported. This protocol defines any device that sends data onto the bus as a transmitter, and the receiving device as the receiver. The device that controls the transfer is a master and device being controlled is the slave. The master will always initiate data transfer and provide the clock to transmit or receive operations. The present device always acts as slave, both in transmission and in reception mode.

Data Transition

Data transition on the SDA line must only occur when the clock SCL is LOW. SDA transitions

while SCL is HIGH will be interpreted as START or STOP condition.

Start Condition

A start condition is defined by a HIGH to LOW transition of the SDA line while SCL is at a stable HIGH level. This "START" condition must precede any command and initiate a data transfer onto the bus. The device continuously monitors the SDA and SCL lines for a valid START and will not response to any command if this condition has not been met.

Stop Condition

A STOP condition is defined by a LOW to HIGH transition of the SDA while the SCL line is at a stable HIGH level. This condition terminates the communication between the devices and forces the bus interface of the device into the initial condition.

Acknowledge

Indicates a successful data transfer. The transmitter will release the bus after sending 8 bits of data. During the 9th clock cycle the receiver will pull the SDA line to LOW level to indicate it received the eight bits of data.

Data Transfer

During data transfer the device samples the SDA line on the leading edge of the SCL clock. Therefore, for proper device operation the SDA line must be stable during the SCL LOW to HIGH transition.

Device Addressing

To start the communication between two devices, the bus master must initiate a start instruction sequence, followed by an eight bit word corresponding to the address of the device. The device recognizes the following two addresses:

1100010d tuner part address

1000110d stereo decoder / audio processor address (APSD)

The last bit of the start instruction defines the type of operation to be performed:

- when set to "1", a read operation is selected (data are transferred from the device to the master)

- when set to "0", a write operation is selected (data are transferred from the master to the device) The device connected to the bus will compare its own hardwired addresses with the slave address being transmitted after detecting a START condition. After this comparison, the device will generate an "acknowledge" on the SDA line and will perform either a read or a write operation according to the state of the R/W bit.

Write Operation

Following a START condition the master sends a slave address word with the R/W bit set to "0". The device will generate an "acknowledge" after this first transmission and will wait for a second word (the subaddress field). This 8bit address field provides an access to any of the 64 internal addresses (32 corresponding to the tuner address and 32 corresponding to the stereo decoder / audio processor address). Upon receipt of the subaddress the device will respond with an "acknowledge". At this time, all the following words transmitted to the device will be considered as Data. The internal address may be automatically incremented if the auto-increment mode is selected (bit S5 of the subaddress word) . After each word has been received the device will answer with an "acknowledge".

Read Operation

IF the master sends a slave address word with the R/W bit set to "1", the device will transmit one &bit data word. This data word content changes according to the address corresponding to the tuner or to the stereo decoder / audio processor. The information are the following:

- tuner

bit0: ISS filter, 1 = ON, 0 = OFF

- bit1: ISS filter bandwidth, 1 = 80kHz, 0 = 120kHz
- bit2: MPOUT,1 = multipath present, 0 = no multipath
- bit3: 1 = PLL is locked in , 0 = PLL is locked out

bit4: fieldstrength indicator, 1 = lower as softmute threshold, 0 = higher as softmute threshold

bit5: adjacent channel indicator, 1 = adjacent channel present, 0 = no adjacent channel

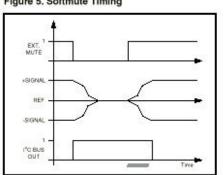
bit6: deviation indicator, 1 = strongoverdeviation present, 0 = no strong overdeviation

bit7: deviation indicator, 1 = overdeviation present, 0 = no overdeviation

- stereo decoder / audio processor

- bit2: Soft Mute status, 1 = ON, 0 = OFF
- bit3: Stereo mode, 1 = stereo, 0 = mono

sm	ac	ac+	dev	dev+	ISSon	80KHz
0	0	0	0	0	0	0
0	1	х	0	0	1	1
0	1	х	1	х	1	0
1	х	х	0	0	1	1
1	0	0	1	х	0	0
1	1	Х	1	х	1	0


Table 1. ISS Modes

MODE 1

sm	ac	ac+	dev	dev+	ISSon	80KHz
0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	1	1	х	х	1	1
0	1	0	1	х	1	0
1	х	х	0	0	1	1
1	0	0	1	х	0	0
1	1	0	1	х	1	0
1	1	1	1	х	1	1

MODE 2

TDA7513

Figure 5. Softmute Timing

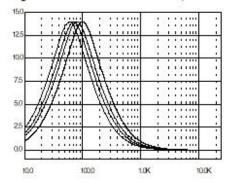
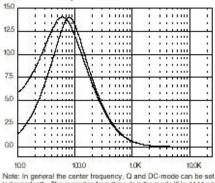



Figure 9. Bass normal and DC Mode @ Gain = 14dB, fc = 80Hz

Note: In general the center frequency, Q and DC-mode can be set independently. The exception from this rule is the mode (5/xx1111xx) where the center frequency is set to 150Hz instead of 100Hz.

Figure 6. Bass Control @ fc = 80Hz, Q = 1

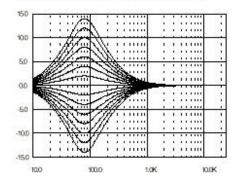


Figure 8. Bass Quality factors @ Gain = 14dB, fc = 80Hz

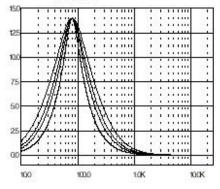
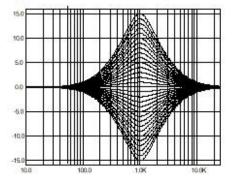



Figure 10. Mid Control @ fc=1kHz, Q=1

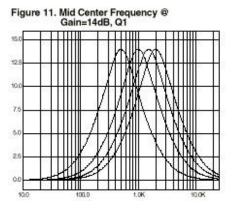


Figure 13. Treble Control @ fc = 17.5KHz

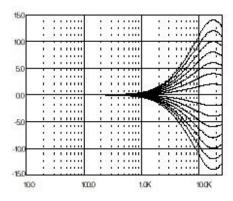


Figure 12. Mid Q-factor @ fc=1kHz, Gain=14dB

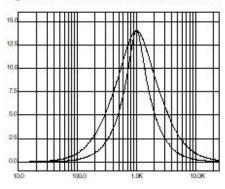
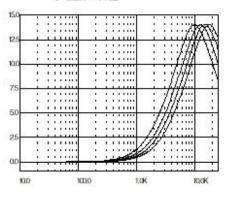
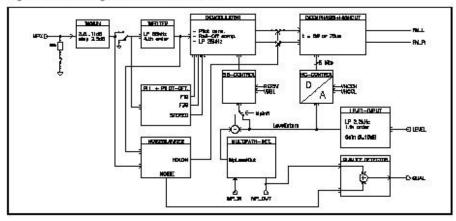
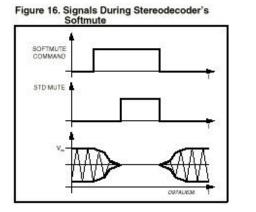
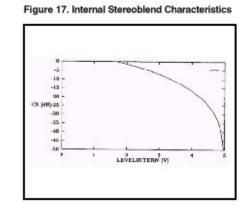
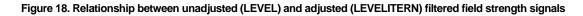
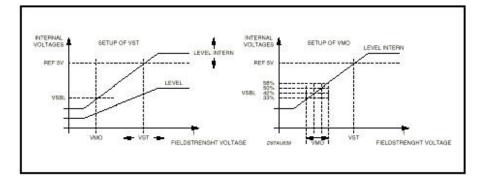
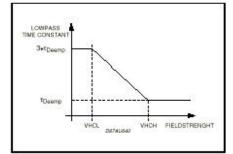
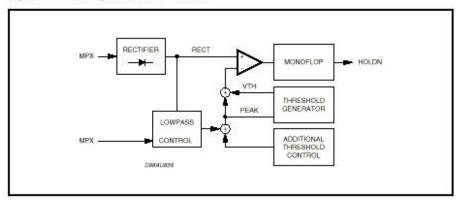


Figure 14. Treble Center Frequencies @ Gain = 14dB


Figure 15. Block Diagram of the Stereodecoder

51

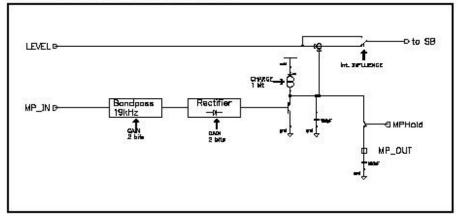
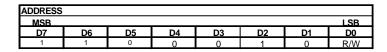

Figure 19. Highcut Characteristics

Figure 20. Block Diagram of the Noiseblanker

Figure 21. Block Diagram of the Multipath Detector


5.0 SOFTWARE SPECIFICATIONS

51

5.1 ADDRESS ORGANIZATION (TUNER SECTION)

SUBADDRESS D7 D6 D5 D4 D3 D2 D1 D0 0 STBY Current select Low current High current Charge Pump Control and S 1 Lock det enable activation delay phase difference threshold AM/FM fref BYPASS VCOadj clockenab PLL Lock Detector,FM mod 2 Counter LSB counter LSB PLL Counter 1 (LSB) 3 counter LSB PLL Counter 2 (MSB) 4 counter MSB PLL Reference Counter 1 (S 5 counter MSB PLL Reference Counter 2 (SDD disable thr depth		
0 STBY select Low current High current Charge Pump Control and S 1 Lock det enable activation delay phase difference threshold AM/FM fref BYPASS VCOadj clockenab PLL Lock Detector,FM mod 2 counter LSB PLL Counter 1 (LSB) 3 counter MSB PLL Counter 2 (MSB) 4 counter LSB PLL Reference Counter 1 (LSB) 5 counter MSB PLL Reference Counter 1 (S 6 FM ISS DD disable thr FM audio amp mute denth FM antenna adjustment FM Antenna Adjustment an Denth		
1 enable activation delay threshold AMVFM BYPASS clockenab PLL Lock Detector,FM model 2 counter LSB PLL Counter 1 (LSB) 3 counter MSB PLL Counter 2 (MSB) 4 counter LSB PLL Reference Counter 1 (LSB) 5 counter MSB PLL Reference Counter 1 (LSB) 6 FM ISS DD disable thr FM audio amp mute denth FM antenna adjustment FM Antenna Adjustment an Denth	de and tests	
3 counter MSB PLL Counter 2 (MSB) 4 counter LSB PLL Reference Counter 1 (5 counter MSB PLL Reference Counter 2 (6 FM audio amp mute denth FM antenna adjustment		
4 Counter LSB PLL Reference Counter 1 (5 counter MSB PLL Reference Counter 2 (6 FM ISS DD disable thr depth FM audio amp mute depth FM antenna adjustment		
5 counter MSB PLL Reference Counter 2 (6 FM audio amp mute depth FM antenna adjustment FM Antenna Adjustment an Depth		
FM ISS DD FM audio amp mute FM audio amp mute 6 disable thr denth FM antenna adjustment	LSB)	
DD FM audio amp mute FM Antenna Adjustment an 6 disable thr denth FM antenna adjustment Denth	(MSB)	
@ weak FS	nd FM Mute	
7 SEEK AM prescaler FM RF adjustment FM RF Adjustment, AM prescaler Seek	escaler and	
8 AM stop station IFC enable Δf IF Counter Control 1 and A Threshold	M S.S.	
9 t SAMPLE f CENTER IF COUNTER CONTROL 2 (centra and sampling time)	al frequency	
10 counter LSB IF Counter Reference (LSB	3)	
11 IFC AM / FM counter MSB IF Counter Reference (MSI Counter Mode Select	B) and IF	
	AM Ultra Narrow AGC Threshold, AM IF2 Amplifier Gain, FM SoftMute Enable and AC test	
13 MPQUAL test MPQUAL test AM Smeter extens FM demod noise blanker FM demodulator fine adjust FM demodulator Adjust, F blanker and MF		
14 ISS AC narrowband threshold ISS AC wideband threshold ISS AC gain HP/BP 30KHz on Quality Detection Adjacent	Channel	
15 ISS MP defeat AC ISS mode ISS MP threshold test Smet unfiltered unfiltered center ctrl on Quality Detection Multipath		
16 0 ISS DD off threshold ISS DD narrow/wide threshold ISS DD time constant Quality Detection Deviation	I	
17 ISS center ISS time constant ISS 80/120 ISS on enable ISS enable Quality ISS Filter		
18 SD mode ISS MP gain VCO adj start test PLL PLL test, 456KHz VCO adji (auto mode)	ustment start	
19 manual/ auto manual VCO frequency man man SET456 ENIFC 456KHz VCO adjustment (r	manual mode)	
20 FM stop station FM soft mute FM Stop Station and Soft M	lute Thresholds	
21 AC QUAL test AdjChan mute clamp AdjChan mute gain, clampi and test	ing threshold	
22 AM Smeter filter TC FMSmslider FM Smeter slider and AM S Time Constant	Smeter filter	
23 IFT2 adjust IFT1 adjust IFT adjust		
24 FMIFamp2 Clksep XTAL adjustment XTAL adjustment and FM II	F Amp2	

25		AM WAGC		FMNAGCkey	AM WAGC and FM NAGC keying		
26		AMNAGC		FIVI demod ret tredijency divider	AM NAGC and FM demod ref frequency divider		
27		test	ISS	ISS testing			
28	ISS filter test	test ISS MP/AC		test ISS	ISS testing		
29	Smeter pins test		test Tl	JNER	Tuner and Smeter tests		
30	AdjChan mute disable @ low FS	AdjChan mute BP/HP	AdiChan mute threshold		AdjChan mute threshold		Adjacent mute disable, filtering and threshold
31	Tuner quality AdjChan gain	Tuner quality Multipath gain			Tuner Quality AdjChannel and Multipath gain, FS ISS Activation		

SUBADDR	ESS						
MSB							LSB
S7	S6	S5	S4	S3	S2	S1	S0
х	Х	autoincr			subaddress	6	

READ MO	DE: ISS OL	JTPUTS					
MSB							LSB
S7	S6	S5	S4	S3	S2	S1	S0
DEV+	DEV	AC	FS	INLOCK	MP	BW	ON

5.2 SUBADDRESS ORGANIZATION (TUNER SECTION)

SUBADDR	ESS 0: Cha	arge Pump	Control					
MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
								CHARGE PUMP
				0	0	0	0	High current = 0mA
				0	0	0	1	High current = 0.5mA
				0	0	1	0	High current = 1mA
				0	0	1	1	High current = 1.5mA
				-	-	-	-	-
				1	1	1	1	High current = 7.5mA
		0	0					Low current = 0uA
		0	1					Low current = 50uA
		1	0					Low current = 100uA
		1	1					Low current = 150uA
	0							Select low current
	1							Select high current
								TUNER STAND-BY
0								Tuner StandBy OFF
1								Tuner StandBy ON

MSB							LSB	FUNCTION	
D7	D6	D5	D4	D3	D2	D1	D0		
							0	VCO adjust Clock Disable	
							1	VCO adjust Clock Enable	
						0		fref BYPASS disable	
						1		fref BYPASS enable	
								TUNER/PLL AM/FM MODE	
					0			Select AM mode	
					1			Select FM mode	
								LOCK DETECTOR CONTROL)L
			0	0				PD phase difference thresho	d 10ns
			0	1					20ns
			1	0					30ns
			1	1					40ns
	0	0						Not valid	
	0	1						Activation delay	4 x 1/f RE
	1	0							6 x 1/f rei
	1	1							8 x 1/f rei
0								Lock detector doesn't control	charge pum
1								Lock detector controls charge	e pump

SUBADDR	ESS 2: PLI	_ Counter 1	(LSB)					
MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	0	0	0	0	0	LSB = 0
0	0	0	0	0	0	0	1	LSB = 1
0	0	0	0	0	0	1	0	LSB = 2
-	-	-	-	-	-	-	-	-
1	1	1	1	1	1	0	0	LSB = 252
1	1	1	1	1	1	0	1	LSB = 253
1	1	1	1	1	1	1	0	LSB = 254
1	1	1	1	1	1	1	1	LSB = 255

SUBADDR	ESS 3: PL	L Counter 2	2 (MSB)	-	-			1
MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	0	0	0	0	0	MSB = 0
0	0	0	0	0	0	0	1	MSB = 256
0	0	0	0	0	0	1	0	MSB = 512
-	-	-	-	-	-	-	-	-
1	1	1	1	1	1	0	0	MSB = 64768
1	1	1	1	1	1	0	1	MSB = 65024
1	1	1	1	1	1	1	0	MSB = 65280
1	1	1	1	1	1	1	1	MSB = 65536
Note: 1. Sw	allow mode	e: f _{VCO} /f _{SYN}	. = LSB + M	ISB + 32				

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	0	0	0	0	0	LSB = 0
0	0	0	0	0	0	0	1	LSB = 1
0	0	0	0	0	0	1	0	LSB = 2
-	-	-	-	-	-	-	-	-
1	1	1	1	1	1	0	0	LSB = 252
1	1	1	1	1	1	0	1	LSB = 253
1	1	1	1	1	1	1	0	LSB = 254
1	1	1	1	1	1	1	1	LSB = 255

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	0	0	0	0	0	MSB = 0
0	0	0	0	0	0	0	1	MSB = 256
0	0	0	0	0	0	1	0	MSB = 512
-	-	-	-	-	-	-	-	-
1	1	1	1	1	1	0	0	MSB = 64768
1	1	1	1	1	1	0	1	MSB = 65024
1	1	1	1	1	1	1	0	MSB = 65280
1	1	1	1	1	1	1	1	MSB = 65536

SUBADDR	RESS 6: FM	Antenna A	djustment	and FM Mu	ute Depth			
MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
								FM antenna adj (proportional to Vtuning)
			0	1	1	1	1	-30%
			0	1	1	1	0	-28%
			-	-	-	-	-	-
			0	0	0	0	1	-2%
			0	0	0	0	0	-0%
			1	0	0	0	0	+0%
			1	0	0	0	1	+2%
			-	-	-	-	-	-
			1	1	1	1	0	+28%
			1	1	1	1	1	+30%
								FM Soft Mute Depth
	0	0						25 dB
	1	0						20 dB
	0	1						16 dB
	1	1						13.5 dB
								ISS deviation detector disabling threshold
								relative to weak field ISS activation
								threshold (byte 31 bit 3-0)
0								-100 mV
1								+100 mV

MSB		-					LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
								FM RF adj (proportional to Vtuning)
			0	1	1	1	1	-30%
			0	1	1	1	0	-28%
			-	-	-	-	-	-
			0	0	0	0	1	-2%
			0	0	0	0	0	-0%
			1	0	0	0	0	+0%
			1	0	0	0	1	+2%
			-	-	-	-	-	-
			1	1	1	1	0	+28%
			1	1	1	1	1	+30%
								AM VCO divider ratio
	0	0						10
	0	1						8
	1	0						6
	1	1						4
								SEEK MODE
0								Seek OFF
1								Seek ON

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
								IF COUNTER CONTROL
					0	0	0	Not valid
					0	0	1	Not valid
					0	1	0	Not valid
					0	1	1	$\Delta f = 6.25 \text{kHz}$ (FM) 1kHz (AM UPC)
					1	0	0	$\Delta f = 12.5 \text{kHz}$ (FM) 2kHz (AM UPC)
					1	0	1	$\Delta f = 25 \text{kHz}$ (FM) 4kHz (AM UPC)
					1	1	0	$\Delta f = 50 \text{kHz}$ (FM) 8kHz (AM UPC)
					1	1	1	$\Delta f = 100 \text{kHz}$ (FM) 16kHz (AM UPC)
				0				IF counter disable / stand by
				1				IF counter enable
								AM Stop Station Threshold
0	0	0	0					0 mV
0	0	0	1					150 mV
-	-	-	-					
1	1	1	0					2100 mV
1	1	1	1					2250 mV

SUBADDRESS 8: IF Counter Control 1 and AM S.S. Threshold

57.

SB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
			0	0	0	0	0	f _{Center} = 10.60625MHz (FM) 449KHz (AM)
			0	0	0	0	1	f _{Center} = 10.61250MHz (FM) 450KHz(AM)
			-	-	-	-	-	-
			0	1	0	1	0	f _{Center} = 10.66875MHz (FM) 459KHz(AM)
			0	1	0	1	1	f _{Center} = 10.67500MHz (FM) 460KHz (AM)
			0	1	1	0	0	f _{Center} = 10.68125MHz (FM) 461KHz (AM)
			0	1	1	0	1	f _{Center} = 10.68750MHz (FM) 462KHz (AM)
			0	1	1	1	0	f _{Center} = 10.69375MHz (FM) 463KHz (AM)
			0	1	1	1	1	f center = 10.70000MHz (FM) 464KHz (AM)
			1	0	0	0	0	f center = 10.70625MHz (FM) 465KHz (AM)
			1	0	0	0	1	f center = 10.71250MHz (FM) 466KHz (AM)
			-	-	-	-	-	-
			1	1	1	1	1	f _{Center} = 10.80000MHz (FM) 480KHz (AM)
0	0	0						t sample = 20.48ms (FM) 128ms (AM)
0	0	1						t sample = 10.24ms (FM) 64ms (AM)
0	1	0						t sample = 5.12ms (FM) 32ms (AM)
0	1	1						t sample = 2.56ms (FM) 16ms (AM)
1	0	0						t _{Sample} = 1.28ms (FM) 8ms (AM)
1	0	1						t _{Sample} = 640ms (FM) 4ms (AM)
1	1	0						t _{Sample} = 320ms (FM) 2ms (AM)
1	1	1						t sample = 160ms (FM) 1ms (AM)

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
0	0	0	0	0	0	0	0	LSB = 0
0	0	0	0	0	0	0	1	LSB = 1
0	0	0	0	0	0	1	0	LSB = 2
-	-	-	-	-	-	-	-	-
1	1	1	1	1	1	0	0	LSB = 252
1	1	1	1	1	1	0	1	LSB = 253
1	1	1	1	1	1	1	0	LSB = 254
1	1	1	1	1	1	1	1	LSB = 255

SB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
		0	0	0	0	0	0	MSB = 0
		0	0	0	0	0	1	MSB = 256
		0	0	0	0	1	0	MSB = 512
	-	-		-	-	-	-	-
		1	1	1	1	0	1	MSB = 15616
		1	1	1	1	1	0	MSB = 15872
		1	1	1	1	1	1	MSB = 16128
								IF COUNTER MODE
0	0							Not valid
0	1							IF counter FM mode (10.7KHz)
1	0							IF counter AM mode (450KHz)
1	1							Not valid

SUBADDRESS 12: AM IF Amplifier Gain and Ultra Narrow Band AGC Threshold, FM Smeter and AC test

57.

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
								test FM FS soft mute enable (FM mode) [bit shared with AM IF AMP Gain]
							0	FS Soft mute disabled
							1	FS Soft mute enabled
								test AC Mute (FM mode) [bit shared with AM IF AMP Gain]
						0		test mode: FM demod Vout is disconnected from users
						1		no test (std)
								AM IF AMP Gain (AM mode)
					0	0	0	Not used
					0	0	1	53.2 dB
					0	1	0	55.8 dB
					0	1	1	60.2 dB
					1	0	0	58.3 dB
					1	0	1	61.7 dB
					1	1	0	62.8 dB
					1	1	1	64.8 dB
								AM UNAGC enable
				1				Enable AM UNAGC
				0				Disable AM UNAGC
								AM Ultra Narrow Band AGC Threshold
0	0	0	0					74.4 dBuV @SG
0	0	0	1					78.8 dBuV @SG
0	0	1	0					80 dBuV @SG
0	0	1	1					80.7 dBuV @SG 119.5dBuV @ IF2AMPOUT
0	1	0	0					53.2 dBuV @SG
0	1	0	1					77.1 dBuV @SG
0	1	1	0					78.5 dBuV @SG
0	1	1	1					79.4 dBuV @SG
1	0	0	0					42.7 dBuV @SG
1	0	0	1					65.8 dBuV @SG
1	0	1	0					77.6 dBuV @SG
1	0	1	1					78.5 dBuV @SG
1	1	0	0					32.6 dBuV @SG 113.5dBuV @ IF2AMPOUT
1	1	0	1					55 dBuV @SG
1	1	1	0					73.3 dBuV @SG
1	1	1	1					77.6 dBuV @SG

MSB		emodulator					LSB	FUNCTION	
D7	D6	D5	D4	D3	D2	D1	D0		
								FM audio demodulator currer	nt adjust
			0	0	0	0	0	+(Au C
			0	0	0	0	1	+0.167	' uA
			-	-	-	-	-		- uA
			0	1	1	1	1	+2.5	1 uA
			1	0	0	0	0	-(Au (
			1	0	0	0	1	-0.167	7 uA
			1	-	-	-	-		- uA
			1	1	1	1	1	-2.51	l uA
								Demodulator Noise Blanker	AM Smeter extension
	0	0						NB1&2 on (impvic&lontmas)	old (10.7 MHz)
	0	1						NB1 on (impvicmas)	old (10.7 MHz)
	1	0						NB2 on (implontmas)	new (450 kHz)
	1	1						NB1&2 off	new (450 kHz)
								Multipath (ISS) test	
0								MP test OFF	
1								MP test ON (ISS qualitydetecto	r MP input from #ACinL,
								ISS MP filter+rect output to Sm	eter test muxer if input 12 is selected

MSB							LSB	FUNCTION	
D7	D6	D5	D4	D3	D2	D1	D0		
								ISS filter for WB	
							0	ISS filter 30KHz OFF	
							1	ISS filter 30KHz ON	
								ISS Adjacent Channel filter configuration	
						0		AC highpass frequency 100KHz	
						1		AC bandpass frequency 100KHz	
					0			AC gain	32 dB
					1				38 dB
								ISS Adjacent Channel thresholds	
		0	0	0				AC wide band threshold	0.25 V
		0	0	1					0.35 V
		0	1	0					0.45 V
		-	-	-					
		1	1	1					0.95 V
0	0							AC narrow band threshold	0 V
0	1								0.1 V
1	0								0.2 V
1	1								0.3 V

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
								ISS Multipath control enabling
							0	Multipath control ON
							1	OFF
								ISS Multipath filter center frequency
						0		MP Bandpass frequency 19 KHz
						1		31 KHz
								ISS Multipath filter input selector (test mode)
					0			Smeter unfilt test OFF
					1			Smeter unfilt test ON
								ISS Multipath threshold
			0	0				0.5 V
			0	1				0.75 V
			1	0				1 V
			1	1				1.25 V
								ISS mode
	0	0						Application mode1
	0	1						Application mode2
								ISS Multipath control mode
0								MP control AC+ detection
1								MP control the AC and AC+ detection

SUBADD	RESS 16: Q	uality Dete	ction Devia	ation						
MSB							LSB	FUNCTION		
D7	D6	D5	D4	D3	D2	D1	D0			
								ISS deviation detector time constant		
					0	0	0	charge current; discharge current	34uA	6uA
					0	0	1		32uA	8uA
					0	1	0		30uA	10uA
					1	0	0		26uA	14uA
					1	1	1		20uA	20uA
								ISS deviation detector thresholds		
			0	0				DEV Threshold for ISS narrow-wide	30 Kł	lz
			0	1					45 Kł	Ηz
			1	0					60 KI	z
			1	1					75 Kł	-Iz
	0	0						DEV Threshold for ISS filter OFF ratio	1	
	0	1							1.3	
	1	0							1.4	
	1	1							1.5	
0								not used		
1								AUX set int80		

57

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
								ISS automatic control from AC detector
							0	ON (AC drives ISSTC
							1	OFF (AC has no inlfuence on ISSTC)
								ISS manual control
						0		automatic control only
						1		manual force filter ON
					0			manual force BW 120 KHz
					1			manual force BW 80 KHz
								ISS time constant
								current: discharge chrg mid chrg narry
		0	0	0				1uA 74uA 124u
		0	0	1				3uA 72uA 122u
		0	1	0				5uA 70uA 120u
		1	0	0				9uA 66uA 116u
		1	1	1				15uA 60uA 110u
								ISS filter center frequency
0	0							shift from 450 kHz -20 KHz
0	1							-10 KHz
1	0							0 KHz
1	1							+10 KHz

SUBADDF	RESS 18: PI	L test, 456	KHz VCO a	adjust star	t, ISS MP C	Sain and SD	out mode	
MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
								PLL TEST MODE
					0	0	0	
					0	0	1	
					0	1	0	
					0	1	1	
					1	0	0	
					1	0	1	
					1	1	0	
					1	1	1	
								Automatic 456 kHz VCO adjustment
				0				Waiting
				1				START
								ISS Multipath filter gain
		0	0					ISS MP Gain 2 dB
		0	1					13 dB
		1	0					16 dB
		1	1					19 dB
								SD pin configuration
0	0							SS (IFC and FM SM Stop)
0	1							IFCounter out
1	0							FM Smeter Stop
1	1							Logic 1

MSB							LSB	FUNCTION	
D7	D6	D5	D4	D3	D2	D1	D0		
							0	Enable IFC (I2CBUS)	OFF
							1		ON
						0		Enable 456KHz VCO adj procedure (I2CBUS)	OFF
						1			ON
	0	0	0	0	0			VCO 456KHz frequency adjust (I2CBUS)	minfreg
	0	0	0	0	1				
	-	-	-	-	-				
	0	1	1	1	1				
	1	0	0	0	0				
	-	-	-	-	-				
	1	1	1	1	0				
	1	1	1	1	1				maxfreq
0								Manual adjustment procedure (I2CBUS)	
1								Automatic adjustment procedure (State Machine)	

SUBADDR	ESS 20: FI	VI Stop Stat	tion and So	oft Mute Th	resholds			
MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
								Soft Mute Threshold on Smeter
				0	0	0	0	0 mV
				0	0	0	1	100 mV
				-	-	-	-	
				1	1	1	0	1.4 V
				1	1	1	1	1.5 V
								FM Stop Station Threshold on Smeter
0	0	0	0					400 mV
0	0	0	1					800 mV
-	-	-	-					
1	1	1	0					3.2 V
1	1	1	1					3.6 V

SUBADDR	ESS 21: A	djacent Cha	annel Mute					
MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
					0	0	0	Adj Channel Mute Gain 10.4 dB
					0	0	1	11.4 dB
					0	1	0	12.4 dB
					0	1	1	13.4 dB
					1	0	0	14.4 dB
					1	0	1	15.4 dB
					1	1	0	16.4 dB
					1	1	1	17.4 dB
	0	0	0	0				Adj Channel Mute Clamp 500 mV
	0	0	0	1				600 mV
	-	-	-	-				
	1	0	0	0				1.3 V
	-	-	-	-				
	1	1	1	0				1.9 V
	1	1	1	1				2 V
								Adjacent Channel (ISS) test
0								AC test OFF
1								AC test ON (ISS qualitydetector AC input from #ACinL, ISS AC filter+rect output to Smeter test muxer if input 12 is selected)

SUBADDR	ESS 22: FI	/I Smeter S	lider and A	M Smeter	Time Cons	tant		
MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
								FM Smeter Slider
			0	0	0	0	0	0 V
			0	0	0	0	1	0.48 V
			-	-	-	-	-	
			1	1	1	1	0	1.45 V
			1	1	1	1	1	1.5 V
								AM Smeter Filter TC (resistor value)
0	0	0						75 KOhm
1	0	0						50 KOhm
0	1	0						35 KOhm
1	1	0						24 KOhm
0	0	1						16 KOhm

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
								IFT1 Adjust
				0	0	0	0	0 pF
				0	0	0	1	0.55 pF
				-	-	-	-	
				0	1	1	1	7.7 pF
				1	1	1	1	8.25 pF
								IFT2 Adjust
0	0	0	0					0 pF
1	0	0	0					1.6 pF
-	-	-	-					
0	1	1	1					22.4 pF
1	1	1	1					24 pF

SUBADDR	RESS 24: X	TAL and FI	IF AMP 2	Gain				
MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
								XTAL adjust Cload
			0	0	0	0	0	0 pF
			0	0	0	0	1	0.625 pF
			0	0	0	1	0	1.25 pF
			0	0	1	0	0	2.5 pF
			0	1	0	0	0	5 pF
			1	0	0	0	0	10 pF
			1	1	1	1	1	10.4 pF
								XTAL TEST
		0						xtal clock
		1						clocksep (testing)
								FM IF Amp2 gain
0	0							6 dB
0	1							8 dB
1	0							10 dB
1	1							not used

SUBADDR	ESS 25: FN	/I NAGC ke	y and AM V	NAGC				
MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
								FM Narrow AGC key IF input
					0	0	0	36 dB
					0	0	1	42 dB
					0	1	0	48 dB
					0	1	1	54 dB
					1	0	0	60 dB
					1	0	1	66 dB
					1	1	0	72 dB
					1	1	1	keying OFF
								AM WAGC starting point @ MIX1IN
0	0	0	0	0				88 dBuV
-	-	-	-	-				
1	1	1	1	1				106 dBuV

SUBADDR	ESS 26: Al	I NAGC ke	y and FM o	demod ref f	requency t	est		
MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
					1	1	0	test for FM demod ref freg divider (standard configuration)
								AM NAGC starting point @ MIX2IN
0	0	0	0	0				85 dBuV
-	-	-	-	-				
1	1	1	1	1				103 dBuV

57.

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
								ISS test multiplexer (1)
0	0	0	0	0	0	0	0	no test
0	0	0	0	0	0	0	1	test MPthresholds
0	0	0	0	0	0	1	0	test ACNthresholds
0	0	0	0	0	1	0	0	test DWthresholds
0	0	0	0	1	0	0	0	test Dthresholds
0	0	0	1	0	0	0	0	test ACWthreshold
0	0	1	0	0	0	0	0	test ac
0	1	0	0	0	0	0	0	test MDSCO
1	0	0	0	0	0	0	0	test ISSout

SUBADDR	RESS 28: IS	S test						
MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
								ISS test multiplexer (2)
		0	0	0	0	0	0	no test
		0	0	0	0	0	1	test dev+
		0	0	0	0	1	0	test dev+
		0	0	0	1	0	0	tset refdev
		0	0	1	0	0	0	test demVout
		0	1	0	0	0	0	test ISSin
		1	0	0	0	0	0	test ISSClkEnable
								ISS test in
	0							test in ISS disable
	1							test in ISS enable
								ISS test clock
0								test ISS clock disable
1								test ISS clock enable

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
								SMETER test multiplexer
		0	0	0	0	0	0	test off
		0	0	0	0	0	1	Test AMAGC1W
		0	0	0	0	1	0	Test AMAGC1N
		0	0	0	0	1	1	Test AMAGC1UN
		0	0	0	1	0	0	Test FMSmuteThreshold
		0	0	0	1	0	1	Test FMSMStop
		0	0	0	1	1	0	Test AMIF2Amp
		0	0	0	1	1	1	Test AMSDDAC
		0	0	1	0	0	0	Test FMKAGC
		0	0	1	0	0	1	Test FMACMDisable
		0	0	1	0	1	0	Test FMDemodAdjON
		0	0	1	0	1	1	Test FMDemodAdiONMute
		0	0	1	1	0	0	Test FMACMuteRct
		0	0	1	1	0	1	Test FSISSONThreshold
		0	0	1	1	1	0	Test FSISSON
		0	0	1	1	1	1	Test ISSInput
	0							Smeter OUT ACD enable
	1							Test SmeterIN
0								Smeter filter force enable
1								Test TMODE1OUT (byte 27/28)

MSB	RESS 30: Ad				T	T I	LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	 D0	
							20	Adjacent channel mute threshold
				0	0	0	0	0 mV
				0	0	0	1	28.7 mV
				-	-	-	-	
				1	0	0	0	229.3 mV
				-	-	-	-	
				1	1	1	0	401.3 mV
				1	1	1	1	430 mV
								Adjacent channel mute filter configuration
			0					AdiChannel Mute HighPass filter 1
			1					AdjChannel Mute BandPass filter 1
		0						AdjChannel Mute HighPass filter 2
		1						AdiChannel Mute BandPass filter 2
								AdjChannel Mute disable @ low FS
0	0							threshold 1 V
0	1							1.33 V
<u>1</u> 1	0							1.66 V 2 V
	RESS 31: A	djacent ch	annel and I	Multipath c	ain, weak	field ISS th		
MSB							LS	
MSB	RESS 31: A	djacent ch D5	annel and I D4	Multipath o D3	ain, weak D2	field ISS th		
MSB				D3	D2	D1	LSI D0	Weak field ISS activation threshold
MSB				D3	D2	D1	LSI D0	Weak field ISS activation threshold -450 mV
MSB				D3	D2	D1	LSI D0	Weak field ISS activation threshold
MSB				D3 0 0 -	D2 0 0 -	D1 0 0 -	LSI D0 0 1	Weak field ISS activation threshold -450 mV -385.7 mV
MSB				D3 0 0 - 0 0	D2 0 0 - 1	D1 0 0 - 1	LSi D0 0 1 - 1	Weak field ISS activation threshold -450 mV -385.7 mV 0 mV
ISB				D3 0 0 - 0 1	D2 0 0 - 1 0	D1 0 0 - 1 0	LS D0 0 1 - - 1 0	Weak field ISS activation threshold -450 mV -385.7 mV - 0 mV +0 mV
MSB				D3 0 0 - 0 1 1	D2 0 0 - 1 0 0 0	D1 0 0 - 1 0 0 0	LS D0 0 1 - - 1 0 1	Weak field ISS activation threshold -450 mV -385.7 mV - - -0 mV +0 mV +64.28 mV
MSB				D3 0 0 - 0 1 1 - -	D2 0 - 1 0 0 - -	D1 0 0 - - 1 0 0 0 -	LS D0 0 1 - - 1 0 1 - -	Weak field ISS activation threshold -450 mV -385.7 mV -
MSB				D3 0 0 - 0 1 1 - 1 1 1	D2 0 - 1 0 0 - 1 1 1	D1 0 0 - - 1 0 0 0 - 1	LSI D0 0 1 - - 1 0 1 - - 0 0 0	Weak field ISS activation threshold -450 mV -385.7 mV - + - + - - - - - - - + - + - + - + - - - - + - + - + - <td< td=""></td<>
MSB				D3 0 0 - 0 1 1 - -	D2 0 - 1 0 0 - -	D1 0 0 - - 1 0 0 0 -	LS D0 0 1 - - - 1 0 - 1 - -	Weak field ISS activation threshold -450 mV -385.7 mV - - - - - - - - - - - - - - - - +0 mV +64.28 mV - +385.7 mV +450 mV
MSB			D4	D3 0 0 - 0 1 1 - 1 1 1	D2 0 - 1 0 0 - 1 1 1	D1 0 0 - - 1 0 0 0 - 1	LSI D0 0 1 - - 1 0 - - 0 0 0	Weak field ISS activation threshold -450 mV -385.7 mV - - - - - - - - - - - - - +0 mV +64.28 mV - +385.7 mV +450 mV Tuner Quality Multipath gain
ISB		D5	D4	D3 0 0 - 0 1 1 - 1 1 1	D2 0 - 1 0 0 - 1 1 1	D1 0 0 - - 1 0 0 0 - 1	LSI D0 0 1 - - 1 0 - - 0 0 0	Weak field ISS activation threshold -450 mV -385.7 mV - - - - - - - - - - - - - +0 mV +64.28 mV - +385.7 mV +450 mV Tuner Quality Multipath gain 0 (OFF) dB
ISB		D5	D4	D3 0 0 - 0 1 1 - 1 1 1	D2 0 - 1 0 0 - 1 1 1	D1 0 0 - - 1 0 0 0 - 1	LSI D0 0 1 - - 1 0 - - 0 0 0	Weak field ISS activation threshold -450 mV -385.7 mV - - - - - - - - - - - - - - - +0 mV +64.28 mV - +385.7 mV +450 mV Tuner Quality Multipath gain 0 (OFF) dB -4 dB
MSB		D5	D4	D3 0 0 - 0 1 1 - 1 1 1	D2 0 0 - 1 0 0 0 - 1	D1 0 0 - - 1 0 0 0 - 1	LSI D0 0 1 - - 1 0 - - 0 0 0	Weak field ISS activation threshold -450 mV -385.7 mV - - - - - - - - - - - - - - - - +64.28 mV - +46.28 mV - - +385.7 mV +450 mV Tuner Quality Multipath gain 0 (OFF) dB -4 dB 0 dB
MSB		D5	D4	D3 0 0 - 0 1 1 - 1 1 1	D2 0 0 - 1 0 0 0 - 1	D1 0 0 - - 1 0 0 0 - 1	LSI D0 0 1 - - 1 0 - - 0 0 0	Weak field ISS activation threshold -450 mV -385.7 mV -0 mV +0 mV +64.28 mV +385.7 mV +450 mV +385.7 mV +450 mV +450 mV Tuner Quality Multipath gain 0 (OFF) dB -4 dB 0 dB +4 dB
MSB		D5	D4	D3 0 0 - 0 1 1 - 1 1 1	D2 0 0 - 1 0 0 0 - 1	D1 0 0 - - 1 0 0 0 - 1	LSI D0 0 1 - - 1 0 - - 0 0 0	Weak field ISS activation threshold -450 mV -385.7 mV -385.7 mV -0 mV +0 mV +0 mV +64.28 mV - +450 mV - +450 mV Tuner Quality Multipath gain 0 (OFF) dB -4 dB 0 dB +4 dB Tuner Quality Adjacent channel gain
MSB		D5	D4	D3 0 0 - 0 1 1 - 1 1 1	D2 0 0 - 1 0 0 0 - 1	D1 0 0 - - 1 0 0 0 - 1	LSI D0 0 1 - - 1 0 - - 0 0 0	Weak field ISS activation threshold -450 mV -385.7 mV -385.7 mV -0 mV +0 mV +0 mV +0 mV +10 mV +44.28 mV +385.7 mV +450 mV Tuner Quality Multipath gain 0 (OFF) dB -4 dB 0 dB +44 dB Tuner Quality Adjacent channel gain
MSB D7	D6	D5	D4	D3 0 0 - 0 1 1 - 1 1 1	D2 0 0 - 1 0 0 0 - 1	D1 0 0 - - 1 0 0 0 - 1	LSI D0 0 1 - - 1 0 - - 0 0 0	Weak field ISS activation threshold -450 mV -385.7 mV -0 mV +0 mV +0 mV +0 mV +64.28 mV - +450 mV - +450 mV - 0 (OFF) dB - - - - - - - - - - - - - -
0 0 0 0	D6	D5	D4	D3 0 0 - 0 1 1 - 1 1 1	D2 0 0 - 1 0 0 0 - 1	D1 0 0 - - 1 0 0 0 - 1	LSI D0 0 1 - - 1 0 - - 0 0 0	Weak field ISS activation threshold -450 mV -385.7 mV -0 mV +0 mV +0 mV +64.28 mV +385.7 mV +44.28 mV +385.7 mV +450 mV Tuner Quality Multipath gain 0 (OFF) dB

SUBADDRESS	MSB D7	D6	D5	D4	D3	D2	D1	LSB D0	FUNCTION
0	spkr coupl		in g	gain		s	ource select	or	Source selector, in-gain, Speaker coupling
1				volume	e steps				Volume
2	not used	not used treble center freq treble steps							Treble
3	bass DC mode								Bass
4									Speaker attenuator Left Front
5				volume	e steps				Speaker attenuator Right Front
6				volume	e steps				Speaker attenuator Left Rear
7				volume	e steps				Speaker attenuator Right Rear
8	NB	time	bass cente	er frequency	not used	soft mu	ute time	I ² C soft mute off	Soft mute, soft mute time, Bass, Noise blanker time
9	deemph.	pilot thr.	NB peak dis	force mono	auto zero status	std in	gain	std mute disable	Stereo decoder mute, st. dec. in-gain, mono, NB PEAK disch.curr., pilot thresh., deemph.
10	overde	ev. adj.	NB on	noise con	tr. thresh.	I	ow threshol	d	Noise Blanker
11	mpath. infl.	VH	ICL	VH	СН	max h	igh cut	high cut on	High cut, multipath influence
12	mpath. infl.	Quality of	del. coeff.	NB field st	rength gain		strength shold	not used	Fieldstrength control
13	mpath de Gi	t. Reflect. ain	mpath charge	mpath int. infl.	mpath o	let. gain	noise rec	t. disch. R	Noise rectifier disch.resistor, Multipath det.bandpass gain, multipath internal influence, reflection gain
14	roll-off compens.		leve	l gain		roll-o	off compens	ation	Roll-off compensation, level gain
15	AP test ON	400K ON		test signa	l selection		test SC OFF	StD test ON	TEST BYTE
16	A						quality noise gain mpathtest AMHCC, Quality noise gain, test		AMHCC, Quality noise gain, test
17	mid Q- factor	mid center trequency					nid steps Mid		
18	not used	not used	not used	not used	not used		VSBL		Stereo blend

5.3 ADDRESS ORGANIZATION (STEREODECODER AND AUDIOPROCESSOR SECTION)

SUBADDRESS

MSB							LSB
S7	S6	S5	S4	S3	S2	S1	S0
testcon	azhold	autoincr			subaddress	5	

READ MODE

S7 S6 S5 S4 S3 S2 S1	LSB							MSB
	S0	S1	52	S3	S4	S5	S6	S7
STEREO SMON			SMON	STEREO				

ADDRESS

51

MSB							LSB
D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	1	1	0	R/W

5.4 SUBADDRESS ORGANIZATION (STEREODECODER AND AUDIOPROCESSOR SECTION)

SUBADDF	RESS 0: Sou	urce select	or, in-gain,	Speaker co	oupling			
MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
								Source selector
					0	0	0	Quasi-differential input 1
					0	0	1	Quasi-differential input 2
					0	1	0	not used (mute)
					0	1	1	Tuner input (AM mode)
					1	0	0	Tuner input (FM mode)
					1	0		not used (mute)
					1	1	0	not used (mute)
					1	1	1	not used (mute)
								In-Gain
	0	0	0	0				0 dB
	0	0	0	1				1 dB
	1	1	1	0				14 dB
	1	1	1	1				15 dB
								Speaker Coupling
0								AC (external)
1								DC (internal)

SUBADDR	ESS 1, 4, 5	i, 6, 7: Volu	ime, Spkr a	tten. LF. R	F, LR, RR			
MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
								Volume steps
1	0	0	0	1	1	1	1	+15 dB
1	0	0	0	0	0	0	1	+1 dB
0	0	0	0	0	0	0	0	0 dB
0	0	0	0	0	0	0	1	-1 dB
0	0	0	0	1	1	1	1	-15 dB
0	0	0	1	0	0	0	0	-16 dB
0	1	0	0	1	1	1	0	-78 dB
0	1	0	0	1	1	1	1	-79dB
х	1	1	х	х	х	х	х	mute

all other combinations not allowed

51

SUBADDR	ESS 2: Tre	ble						
MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
								Treble filter steps
			0	0	0	0	0	-15 dB
			0	0	0	0	1	-14 dB
			0	1	1	1	0	-1 dB
			0	1	1	1	1	0 dB
			1	1	1	1	1	0 dB
			1	1	1	1	0	+1 dB
			1	0	0	0	1	+14 dB
			1	0	0	0	0	+15 dB
								Treble filter center frequency
	0	0						10.0 kHz
	0	1						12.5 kHz
	1	0						15.0 kHz
	1	1						17.5 kHz

ISB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
								Bass filter steps
			0	0	0	0	0	-15 dB
			0	0	0	0	1	-14 dB
			0	1	1	1	0	-1 dB
			0	1	1	1	1	0 dB
			1	1	1	1	1	0 dB
			1	1	1	1	0	+1 dB
			1	0	0	0	1	+14 dB
			1	0	0	0	0	+15 dB
								Bass filter Q-factor
	0	0						1.00
	0	1						1.25
	1	0						1.50
								2 (makes cent. freq. = 150Hz when
	1	1						programmed to 100Hz)
								Bass filter DC mode
0								off

SUBADDR	ESS 4: Spe	eaker atten	uator Left	Front				
MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
								Volume steps
1	0	0	0	1	1	1	1	+15 dB
1	0	0	0	0	0	0	1	+1 dB
0	0	0	0	0	0	0	0	0 dB
0	0	0	0	0	0	0	1	-1 dB
0	0	0	0	1	1	1	1	-15 dB
0	0	0	1	0	0	0	0	-16 dB
0	1	0	0	1	1	1	0	-78 dB
0	1	0	0	1	1	1	1	-79dB
х	1	1	х	х	х	х	х	mute

all other combinations not allowed

SUBADDR	ESS 8: Sof	t mute, Bas	ss, Noise bl	anker time)			
MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
								Soft mute activation control
							0	I ² C bus Audio Processor mute ON (independently of pin Audio Mute)
							1	I ² C bus Audio Processor mute OFF (pin Audio Mute controls muting: pin=0 -> mute ON, pin=1 -> mute OFF)
					0	0		Soft mute transition time = 0.48 ms
					0	1		Soft mute transition time = 0.96 ms
					1	0		Soft mute transition time = 20.2 ms
					1	1		Soft mute transition time = 40.4 ms
								Bass filter center frequency
		0	0					60 Hz
		0	1					70 Hz
		1	0					80 Hz
		1	1					100 Hz (if bass DC mode OFF)
		1	1					150 Hz (if bass DC mode ON)
								Noise Blanker time
0	0							38 us
0	1							25.5 us
1	0							32 us
1	1							22 us

SUBADDR	ESS 9: Ste	reo decode	er mute, st.	dec. in-ga	in, mono, N	IB PEAK di	isch. Curr.	, pilot thresh., deemph.
MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
								Stereo Decoder Mute
							0	high-ohmic mute, pilot hold, multipath time constant short ENABLED (mute set by pin RDS mute LOW)
							1	high-ohmic mute, pilot hold, multipath time constant short DISABLED (regardless of pin RDS mute)
								Stereo Decoder In-gain
					1	1		0 dB
					1	0		2.5 dB
					0	1		4 dB
					0	0		5.5 dB
								Auto Zero Status
				0				disabled
				1				enabled: transition 0->1 performs Autozero sequence
								Force MONO
			0					ON
			1					OFF (automatic MONO/STEREO switch)
								Noiseblanker PEAK discharge current
		0						low
		1						high
								Pilot Threshold
	0							high
	1							low
								Deemphasis
0								50 us
1								75 us

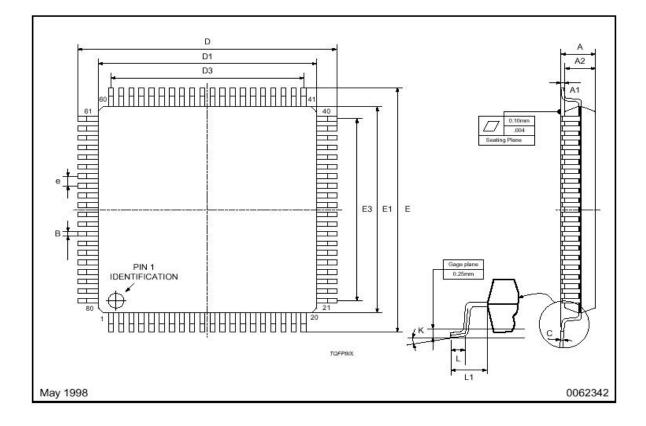
MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
								Low threshold
					0	0	0	65 mV
					0	0	1	60 mV
					1	1	1	30 mV
								Noise-controlled threshold
			0	0				320 mV
			0	1				260 mV
			1	0				200 mV
			1	1				140 mV
								Noise Blanker operation
		0						OFF
		1						ON
								Overdeviation adjustment
0	0							2.8 V
0	1							2.0 V
1	0							1.2 V
1	1							OFF

	<u>RESS 11: Hi</u>	igh cut, mu	ltipath influ	lence	-			
MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
								High cut operation
							0	OFF
							1	ON
								Max. high cut
					0	0		2 dB
					0	1		5 dB
					1	0		7 dB
					1	1		10 dB
								VHCH
			0	0				42% REF 5V
			0	1				50% REF 5V
			1	0				58% REF 5V
			1	1				66% REF 5V
								VHCL
	0	0						16.7% VHCH
	0	1						22.2% VHCH
	1	0						27.8% VHCH
	1	1						33.3% VHCH
								Strong Multipath influence on PEAK 18k
0								OFF
1								ON (18k discharge if VMPOUT < 2.5 V)

SUBADD	RESS 12: Fi	eldstrengtl	n control					
MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
								Noise blanker Field Strength Threshold
					0	0		min
					1	0		
					0	1		
					1	1		max
								Noise blanker Field Strength Gain
			0	0				2.3 V
			1	0				1.8 V
			0	1				1.3 V
			1	1				OFF
								Quality detector coefficient a
	0	0						a = 0.7
	0	1						a = 0.85
	1	0						a = 1.0
	1	1						a = 1.15
								Multipath influence on PEAK discharge
0								OFF
1								ON

57.

SUBADDF	RESS 13: No	oise rectifi	er disch. re	sistor, Mul	tipath det.	bandpass	gain, mult	ipath internal influence, reflection gain
MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
								Noise Rectifier Discharge Resistor
						0	0	R = infinite
						0	1	R = 56k
						1	0	R = 33k
						1	1	R = 18k
								Multipath Detector Bandpass Gain
				0	0			6 dB
				0	1			12 dB
				1	0			16 dB
				1	1			18 dB
								Multipath Detector Internal Influence
			0					ON
			1					OFF
								Multipath Detector Charge current
		0						0.5 uA
		1						1 uA
								Multipath Detector Reflection Gain
0	0							Gain = 7.6 dB
0	1							Gain = 4.6 dB
1	0							Gain = 0 dB
1	1							disabled


SUBADDR	ESS 14: Ro	oll-off com	pensation,	level gain				
MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
								Roll-off compensation
0					0	0	0	not allowed
0					0	0	1	7.2%
0					0	1	0	9.4%
0					1	0	0	13.7%
0					1	1	1	20.2%
1					0	0	0	not allowed
1					0	0	1	19.6%
1					0	1	0	21.5%
1					1	0	0	25.3%
1					1	1	1	31.0%
								Level gain
	0	0	0	0				0 dB
	0	0	0	1				0.66 dB
	0	0	1	0				1.33 dB
	1	1	1	1				10 dB

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
								Stereo Decoder test signals enabling
			1				0	test signal disabled
							1	test signal enabled (if S6=1) on ACinR
								Stereo Decoder test signals selection
		0	0	0	0			VHCCH
		0	0	0	1			LEVELINTERN
		0	0	1	0			PILOT
		0	0	1	1			VCOCON (VCO tuning voltage)
		0	1	0	0			PIL VTH
		0	1	0	1			HOLDN
		0	1	1	0			NB VTH
		0	1	1	1			F228
		1	0	0	0			VHCCL
		1	0	0	1			VSBL
		1	0	1	0			state machine enable ifc
		1	0	1	1			state machine set456
		1	1	0	0			PEAK
		1	1	0	1			state machine check
		1	1	1	0			REF5V
		1	1	1	1			SBPWM
					i .			Test SC filters
						0		Fast test enabled (2-phase 200 kHz cloc
						1		Test disabled (4-phase 200 kHz clock)
								400 kHz VCO OFF
	0							OFF
	1							ON
	I							Audio processor test enabling
0								Test disabled
1								Test enabled (if $S6 = 1$)
								restenabled (ii 66 = 1)
	ESS 16: M	ultipath tes	st, AMHCC					
MSB			54			D 4	LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
								Multipath test enable
							0	Multipath Detector test input disabled
							1	Multipath Detector test input enabled
								Quality detector noise gain
					0	0		15 dB
					0	1		12 dB
					1	0	<u> </u>	9 dB
					1	1		6 dB
	-							AM High-cut control corner frequency
<u> </u>	0	0	0	0				
0		0	0	1		1	1	•
0 0	0	0	U U	· · ·				
	0 1	 	1					

MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
								Mid Filter steps
			0	0	0	0	0	-15 dB
			0	0	0	0	1	-14 dB
			0	1	1	1	0	-1 dB
			0	1	1	1	1	0 dB
			1	1	1	1	1	0 dB
			1	1	1	1	0	+1 dB
			1	0	0	0	1	+14 dB
			1	0	0	0	0	+15 dB
								Mid Filter center frequency
	0	0						500 Hz
	0	1						1.0 kHz
	1	0						1.5 kHz
	1	1						2.0 kHz
								Mid Filter Q factor
0								1.0

SUBADDR	ESS 18: St	ereo blend						
MSB							LSB	FUNCTION
D7	D6	D5	D4	D3	D2	D1	D0	
								VSBL
					0	0	0	VSBL at 29% REF 5V
					0	0	1	VSBL at 33% REF 5V
					0	1	0	VSBL at 38% REF 5V
					0	1	1	VSBL at 42% REF 5V
					1	0	0	VSBL at 46% REF 5V
					1	0	1	VSBL at 50% REF 5V
					1	1	0	VSBL at 54% REF 5V
					1	1	1	VSBL at 58% REF 5V

DIM.		mm			inch	
Dinvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			1.60			0.063
A1	0.05	14 (14	0.15	0.002		0.006
A2	1.35	1.40	1.45	0.053	0.055	0.057
в	0.22	0.32	0.38	0.009	0.013	0.015
С	0.09		0.20	0.003		0.008
D		16.00			0.630	
D1		14.00			0.551	
D3		12.35			0.295	
е		0.65	3		0.0256	
Е		16.00			0.630	
E1		14.00			0.551	
E3		12.35			0.486	
L	0.45	0.60	0.75	0.018	0.024	0.030
L1		1.00	2		0.0393	
к		3	.5°(min.)), 7°(max	ĸ.)	-

49/50

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

> The ST logo is a registered trademark of STMicroelectronics

STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. http://www.st.com

Á7/.