

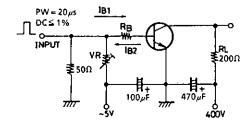
No.1071D

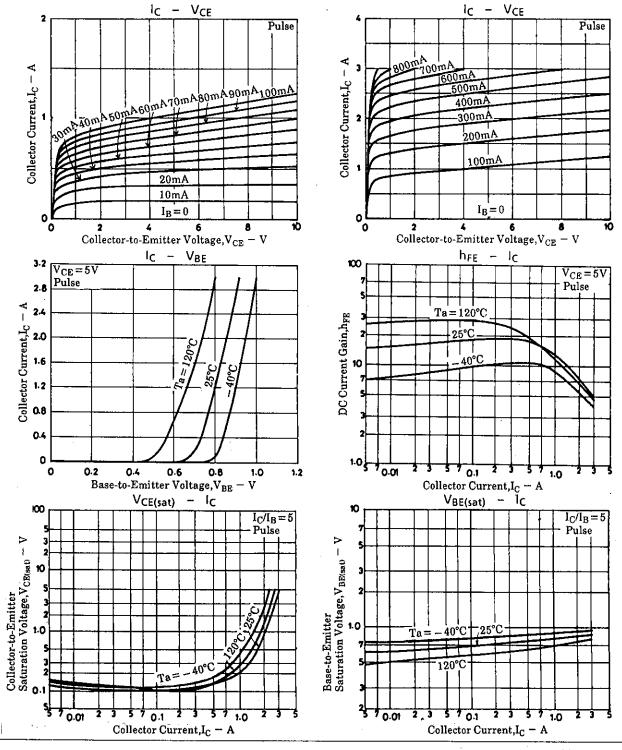
2SC3152

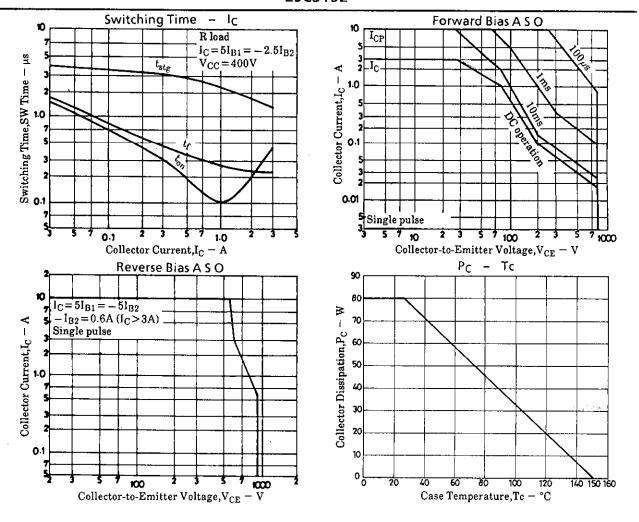
NPN Triple Diffused Planar Silicon Transistor

Switching Regulator Applications

Features


- · High breakdown voltage ($V_{CBO} \ge 900V$).
- · High switching speed.
- · Wide ASO.


Absolute Maximum Ratings a	t Ta = 25°C				unit	
Collector-to-Base Voltage	v_{cbo}			900	V	
Collector-to-Emitter Voltage	V_{CEO}			800	V	
Emitter-to-Base Voltage	V_{EBO}^{OBO}			7	v	
Collector Current	$I_{\rm C}$			3	À	
Collector Current (Pulse)	I_{CP}	Pulse, PW≦300μs, Duty Cycle :	≤10%	10	A	
Base Current	IB			1.5	Ā	
Collector Dissipation	$P_{\mathbf{C}}^{-\mathbf{D}}$	Tc = 25°C		80	W	
Junction Temperature	$\mathbf{T}\mathbf{j}$			150	°C	
Storage Temperature	Tstg		-55 to +		°C	
Electrical Characteristics at T	05°C					
Collector Cutoff Current		V -900V I -0	min	typ	max	unit
Emitter Cutoff Current	I _{CBO}	$V_{CB} = 800V, I_{E} = 0$			10	μA
DC Current Gain	IEBO	$V_{EB}=5V, I_C=0$	- 039		10	μA
DC Current Gain	$h_{FE}(1)$	$V_{CE}=5V$, $I_{C}=0.2A$	10%		40>	K
Cain Bandorida B. 1. /	h _{FE} (2)	$V_{CE} = 5V, I_C = 1A$	8			
Gain-Bandwidth Product	$\mathbf{f_T}$	$V_{CE} = 10V, I_{C} = 0.2A$		15		MHz
Output Capacitance	Cob	$V_{CB} = 10V, f = 1MHz$		60		\mathbf{pF}
C-E Saturation Voltage	V _{CE(sat)}	$I_C = 1.5A, I_B = 0.3A$			2.0	\mathbf{v}
B-E Saturation Voltage	V _{BE(sat)}	$I_C = 1.5A, I_B = 0.3A$			1.5	\mathbf{v}
C-B Breakdown Voltage	$V_{(BR)CBO}$	$I_C = 1 \text{mA}, I_E = 0$	900			V
C-E Breakdown Voltage	$V_{(BR)CEO}$	$I_C = 5 \text{mA}, R_{BE} = \infty$	800			\mathbf{V}
E-B Breakdown Voltage	V _{(BR)EBO}	$I_E=1$ mA, $I_C=0$	7			V
C-E Sustain Voltage	$V_{\mathrm{CEO(sus)}}$	$I_C = 3A, L = 50\mu H, I_B = 1A$	800			V
		$I_C = 1A$, $I_{B1} = 0.2A$, $I_{B2} = -0.2A$,	800			\mathbf{v}
		L=2mH, Clamped				
	$V_{CEX(sus)}(2)$	$I_C = 0.5A$, $I_{B1} = 0.4A$, $I_{B2} = -0.1A$, 900			V
•		L=5mH, Clamped				
Rise Time	ton [$I_C = 2A$, $I_{B1} = 0.4A$, $I_{B2} = -0.8A$,			1.0	ns
Storage Time	t _{stg}	$R_L = 20\Omega, V_{CC} = 400V$			3.0	ns
	t _f				0.7	ns


※: For the h_{FE}(1) of the 2SC3152, specify two ranks or more in principle.

10 K 20	15 L 30	20 M 40	Package Dimensions 2022A
			(unit:mm)
			1.0
			Q 3.2 #

Switching Time Test Circuit

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall;
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of April, 1996. Specifications and information herein are subject to change without notice.